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Abstract 

Land-use change models are used to understand the wide-ranging impacts that land-use 

changes have on a region. Effective modelling of land-use changes must capture multiple, 

mutually influential drivers. A common framework for modelling land-use changes uses 

Cellular Automata (CA), which have seen a growth in application driven by the availability of 

generic modelling platforms, shifting the focus of research about Land-Use Cellular Automata 

(LUCA) models from development to application, with a particular focus on calibration. 

Calibration of LUCA models is complex, as land-use change is a path-dependent process with 

uncertain outcomes captured by a number of model parameters. Of note are LUCA models that 

use a transition potential, which are traditionally calibrated using a manual approach, a process 

that is time-consuming and lacks objectivity. Hence, there has been a focus on the development 

of automatic calibration methods for these types of models. To automate calibration, metrics 

are used to capture two separate properties of performance: locational agreement, the match of 

pixels between simulated outputs and the corresponding observed data, and landscape pattern 

structure, the inferred realism of land-use change processes captured by the difference between 

the observed and simulated landscape patterns. 

The primary objective of this research is to develop improved automatic calibration methods 

for transition potential based LUCA models. There are two common approaches, optimisation-

based and process-specific. The major contributions of this body of work are the development 

of improved versions of each type of approach, and the development of a hybrid method 

combining the advantages of the two approaches. 

First, a generic multi-objective optimisation framework for automatic calibration of transition 

potential LUCA models was developed in Paper 1 (Chapter 2) that allows for the exploration 

of trade-offs between the model performance objectives. Second, a process-specific semi-

automatic calibration method that integrates objective analysis with discursive input to 

facilitate efficient calibration of neighbourhood rules (the main calibration parameter for this 

type of model) within a limited computational budget was developed in Paper 2 (Chapter 3). 

Finally, a generic framework for hybrid automatic calibration, which integrates domain 

knowledge into a multi-objective optimisation approach, was developed in Paper 3 (Chapter 

4). The utility of each method was demonstrated via case study applications, showing 

promising potential for future applications of LUCA models to support long term planning and 

policy development.  
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1 Introduction 

Land-use change models are used to understand the wide-ranging impacts that land-use change 

processes, such as urbanisation, deforestation and agricultural intensification, have on a region. 

As land-use changes are generally driven by policy and spatial planning, land-use change 

models are increasingly being used as part of decision support systems in the design and 

development of land-use change policy (Van Delden and Hurkens, 2011). Land-use change 

models have been applied to a diverse range of planning problems, including river basin 

management (Van Delden et al., 2007), developing sustainable agricultural practises (Connor 

et al., 2015, Van Delden et al., 2010, Murray-Rust et al., 2014c), exploring sustainable regional 

development plans (Rutledge et al., 2008) and urban growth planning (Berberoğlu et al., 2016, 

Chaudhuri and Clarke, 2013a). 

Effectively modelling land-use changes requires capturing multiple, mutually influential bio-

physical and socio-economic drivers to generate a realistic output (Lambin et al., 2001, Wang 

et al., 2011a). A common approach for modelling land-use changes uses Cellular Automata 

(CA), which aim to simulate the aggregate behaviour of multiple change agents, allowing for 

the exploration of large areas without the need for detailed data of actor behaviour (Hewitt et 

al., 2014). Their relative simplicity and intuitiveness have made CA a popular framework for 

modelling land-use changes (Santé et al., 2010). 

Historically, CA were proposed to model geographic systems, such as land-use changes, by 

Tobler (1979) because they are an effective means of capturing the influence of spatial 

dynamics, a major driver of land-use change. Further investigation proposed that, with certain 

relaxations to the conventional CA structure (Couclelis, 1985), CA were capable of generating 

fractal patterns consistent with urban evolution (Batty and Longley, 1994, White and Engelen, 

1993a). This led to the development of three major operational Land-Use Cellular Automata 

(LUCA) models (García et al., 2012), which vary based on how land-use changes are allocated: 

the SLEUTH pattern extrapolation model of Clarke et al. (1997) that allocates transitions by 

replicating different forms of urban growth and extrapolating each form based on the observed 

frequency, the development probability model of Wu (2002) that allocates land-use transitions 

based on a probability calculated from global and local factors, and the transition potential 

model of White and Engelen (1993c) that allocates land-use transitions based on the quantified 

potential ability of specific cells to support each particular land-use class. 
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The development of operational LUCA models led to an increase in the application of models 

that use the same structure. This growth has also been driven by the availability of generic 

modelling platforms SLEUTH and Metronamica (Van Delden and Hurkens, 2011), a transition 

potential model derived from White and Engelen (1993c). With consistent, well tested model 

architecture, and the availability of generic platforms allowing for direct application, research 

focus has shifted from LUCA model development to model application, with a particular focus 

on calibration. 

Calibration of LUCA models is the process of determining a model parameter set, through the 

initial setting of model parameters, the iterative adjustment of these parameters based on 

comparison of the model output with observations, and the selection of a final parameter set, 

for application to a specific case study for long-term scenario analysis (Van Vliet et al., 2016). 

The iterative adjustment stage of LUCA model calibration is complex, as land-use change is a 

path-dependent process with uncertain outcomes (Brown et al., 2005) captured by a number of 

model parameters. The complexity of the calibration has led to a focus on automating the 

calibration procedure to make LUCA models more accessible and straightforward to apply for 

decision makers. Both the SLEUTH pattern extrapolation model (Silva and Clarke, 2002) and 

the development probability type model (Wu, 2002) have had (semi) automatic calibration 

methods since their inception, and both types of models have seen numerous developments in 

automatic calibration approaches (Clarke, 2018, Şalap-Ayça et al., 2018, Cao et al., 2014, 

Mustafa et al., 2018). By contrast, transition potential models are traditionally calibrated using 

a manual approach (White et al., 1997), which continues to be a common method of calibration 

(García et al., 2012, Van Delden et al., 2012), although several automatic calibration methods 

have been developed (Straatman et al., 2004, García et al., 2013, Van Vliet et al., 2013b, Blecic 

et al., 2015). 

Manual calibration has remained common for transition potential LUCA models because it 

integrates discursive knowledge into the calibration process and ensures that results are 

consistent with process understanding. This is valuable because of the complexity of transition 

potential based LUCA models, which are commonly implemented with multiple dynamic land-

use classes and use a wider neighbourhood for the consideration of spatial dynamics. Transition 

potential models extend the size of the neighbourhood of cells considered beyond a 

conventional CA model (the four or eight immediately adjacent cells) to all cells within a 

certain cellular radius, which requires the use of neighbourhood rules to characterise the 

influence different land-use classes exert on each other relative to proximity. These are the 
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main calibration parameters of this type of LUCA model (Engelen and White, 2008). Hence, 

transition potential LUCA models have a parameter space with much higher dimensionality 

(i.e. the number of parameters and the range of values they can take during the adjustment 

process) compared with other LUCA models, which makes calibration more complex. Despite 

the advantages of manual calibration, it is time-consuming, lacks objectivity, and is difficult to 

repeat (Jafarnezhad et al., 2016, García et al., 2013). Hence, there is an increasing focus on the 

development of automatic calibration methods for transition potential LUCA models (Van 

Vliet et al., 2013b). 

Automating LUCA model calibration requires objective measures of LUCA model 

performance. Due to the path dependence and uncertainty associated with the process of land-

use change, two separate properties of LUCA model performance should be considered: (i) 

locational agreement, alternatively termed cell-by-cell agreement (Hagen-Zanker, 2009), 

which is the match of pixels between simulated outputs and the corresponding observed data 

(Van Vliet et al., 2013b, Hagen-Zanker, 2009), and (ii) landscape pattern structure, which is 

the inferred realism of land-use change processes captured by the difference between the 

observed and simulated landscape patterns (Engelen and White, 2008). These have been 

considered to different extents in previous automatic calibration approaches, as outlined below. 

There have been two approaches developed for the automatic calibration of transition potential 

based LUCA models. The first approach is optimisation-based, aiming to identify the best set 

of model parameters that optimise the measures of model performance used. Optimisation-

based approaches are used because they are able to find (near) globally optimal solutions for 

highly complex (e.g. non-linear, non-convex) problems, and it is straightforward to link them 

with existing simulation models, such as LUCA models, without the need for problem 

simplification (Maier et al., 2015). The generic nature and advantages of optimisation has led 

to multiple applications to calibrate other forms of LUCA models (Feng et al., 2011, Liu et al., 

2012, Clarke, 2018, Li et al., 2013). 

As LUCA models have two distinct aspects of model performance, automatic calibration can 

be considered a multi-objective optimisation problem (Hagen-Zanker, 2008). However, at 

present, multi-objective optimisation has only been applied to automatically calibrate LUCA 

urban growth models implemented with a single (urban) active land-use class (Trunfio, 2006, 

Cao et al., 2014). In contrast, studies that use optimisation approaches for the calibration of 

LUCA models with multiple dynamic land-use classes have only considered a single objective. 
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For example, Blecic et al. (2015) considered only the locational agreement element of 

performance for automatic calibration, and while García et al. (2013) used both locational 

agreement and landscape pattern structure metrics, these were combined into a single objective 

during the optimisation process, meaning important trade-offs between locational agreement 

and landscape pattern structure could not be examined. Both studies also generated only one 

possible model parametrisation for future scenario analysis, limiting the ability to understand 

how calibrated parameters are potentially influenced by the metrics used for optimisation. 

The second type of approach for automatic calibration of transition potential based LUCA 

models is process-specific, developed to generate a single calibrated set of neighbourhood rules 

using a single calibration objective as efficiently as possible. Such approaches generally 

attempt to mimic a manual calibration procedure to generate a set of neighbourhood rules that 

is consistent with process understanding. Despite a focus on neighbourhood rules, previous 

process-specific methods have not fully utilised discursive knowledge (White et al., 1997, 

Hagoort et al., 2008) to generate neighbourhood rules that are consistent with process 

understanding (Van Vliet et al., 2013b), and do not necessarily focus on the most important 

neighbourhood rules during the automatic calibration process (Straatman et al., 2004, Maas et 

al., 2005). Previous methods have also only used a single metric of performance, not 

considering the implementation of multiple metrics to capture the two aspects of LUCA model 

performance, and how these competing objectives impact on the resulting model. 

1.1 Research objectives 

The objectives of this body of research are summarised in Figure 1.1. As shown, this research 

is divided between a set of primary objectives and secondary objectives. The overall aim of 

this research is to develop improved (semi) automatic calibration methods for transition 

potential based LUCA models. This development will ultimately aid in the evaluation of long-

term policy and spatial planning by making the application of transition potential based LUCA 

models more straightforward, objective, and efficient. Given that there are two distinct 

conceptual approaches to automatic calibration, optimisation-based and process-specific, this 

study has three primary objectives that fall under this overall aim, as shown. 
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Figure 1.1. Research objectives 

 

Primary objective 1: To develop an improved multi-objective optimisation framework that 

automates the calibration of LUCA models with multiple dynamic land-use classes, enabling 

the identification of multiple model parameterisations that could be suitable for long-term 

scenario analysis, and to demonstrate the application of the framework to a real-world case-

study (Paper 1); 

Primary objective 2: To develop an improved calibration method that utilises process 

knowledge about meaningful interactions to facilitate efficient automatic calibration that 

allows for consideration of both aspects of LUCA model performance for a limited 

computational budget, to demonstrate the utility of such an approach, and to determine the 

impact of a preference for different objectives on the resultant calibrated model (Paper 2); 

Primary objective 3: To introduce a hybrid method for integrating the results of a process-

specific (semi) automatic calibration method into an optimisation-based approach, and to 

investigate the utility of this approach compared with the standard formulation of the other two 

methods (Paper 3). 

In addition to the primary objectives outlined, this research has secondary objectives that are 

naturally aligned with the development of automatic calibration methods, and will further 

enhance automatic calibration methods: 
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Secondary objective 1: To enhance understanding of how the metrics used to quantify the 

separate properties of LUCA model performance, locational agreement and landscape pattern 

structure, impact the resulting model parameterisation and simulated output obtained at the 

conclusion of automatic calibration (Papers 1, 2, and 3). 

Secondary objective 2: To integrate process understanding into the application and analysis of 

automatic calibration methods to gain insights into how this knowledge can improve automatic 

calibration, and gain a deeper understanding of LUCA model behaviour (Papers 1, 2, and 3). 

1.2 Thesis overview 

The remainder of this thesis is organised with the main contributions presented in Chapters 2 

to 4. Each chapter is presented as a technical journal paper, with Chapter 2 a published paper 

in Environmental Modelling and Software and Chapter 3 a revised version of a paper submitted 

to Environmental Modelling and Software in response to reviewer comments. 

Chapter 2 presents a generic multi-objective optimisation framework for the automatic 

calibration of a LUCA model with multiple dynamic land-use classes. The generic nature of 

the framework facilitates substitution of the different components (e.g. land-use model, 

metrics) and a detailed exploration of the trade-off between the LUCA model performance 

objectives. The utility of the proposed framework is demonstrated via application to a case 

study of the Randstad region in the Netherlands. 

Chapter 3 presents an original process-specific calibration method for the (semi) automatic 

calibration of LUCA models. The proposed method is divided into two components, first 

simplifying the problem to the core set of neighbourhood rule parameters before calibrating 

these parameters using a two-stage procedure to ensure calibration is as efficient as possible. 

The utility of the proposed method is demonstrated via application to four case studies of major 

European cities. 

Chapter 4 presents a method developed to combine the two approaches for (semi) automatic 

calibration of LUCA models that utilises the benefits of both. The method allows for the 

generic multi-objective optimisation framework developed in Chapter 2 to use the output of 

the process-specific calibration approach developed in Chapter 3 so that the optimisation 

process starts in promising regions of the parameter space for efficient automatic calibration 

that allows for exploration of the trade-off between the model performance objectives used. 

The utility of the proposed approach is demonstrated via application to a case-study of Madrid, 

Spain. 
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A synthesis of the research presented in this thesis is presented in Chapter 5, which 

summarises the main research contributions of this body of work, the research limitations, and 

future directions for research in this field. 
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2 Multi-objective optimisation framework for calibration of 

Cellular Automata land-use models 
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Multi-objective optimisation framework for calibration of Cellular 

Automata land-use models 

Abstract 

Modelling of land-use change plays an important role in many areas of environmental planning. 

However, land-use change models remain challenging to calibrate, as they contain many 

sensitive parameters, making the calibration process time-consuming. We present a multi-

objective optimisation framework for automatic calibration of Cellular Automata land-use 

models with multiple dynamic land-use classes. The framework considers objectives related to 

locational agreement and landscape pattern structure, as well as the inherent stochasticity of 

land-use models. The framework was tested on the Randstad region in the Netherlands, 

identifying 77 model parameter sets that generated a Pareto front of optimal trade-off solutions 

between the objectives. A selection of these parameter sets was assessed further based on 

heuristic knowledge, evaluating the simulated output maps and parameter values to determine 

a final calibrated model. This research demonstrates that heuristic knowledge complements the 

evaluation of land-use models calibrated using formal optimisation methods. 
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2.1 Introduction 

Modelling of land-use change plays an important role in many areas of environmental planning, 

such as river basin management (Van Delden et al., 2007), natural area preservation (Hewitt et 

al., 2014), the development of sustainable agricultural practises (Murray-Rust et al., 2014a, 

Murray-Rust et al., 2014b), and the influence of urban dynamics on surrounding regions (Haase 

et al., 2012, Lauf et al., 2012). To better understand the influences of land-use changes, models 

are increasingly being used as part of decision support systems to evaluate policy that 

influences spatial planning (Van Delden et al., 2011). To represent land-use dynamics 

realistically, such models must incorporate complex socio-economic and biophysical drivers 

with human-environment interactions (Lambin et al., 2001). As a result, Land-Use Cellular 

Automata (LUCA) have become a popular modelling framework for evaluating land-use 

changes, as they are able to simulate the behaviour of complex systems with a high degree of 

realism (Hewitt et al., 2014). 

Historically, Cellular Automata methods were proposed for application to geographic systems 

by Tobler (1979), with LUCA models first used to replicate observed fractal patterns of urban 

evolution (Couclelis, 1985, Couclelis, 1989, Batty and Longley, 1994), followed by their 

development into dynamic land-use models (White and Engelen, 1993c, Clarke et al., 1997). 

Much effort has been invested in developing LUCA models for different global regions, with 

applications reviewed by Santé et al. (2010). This includes the advent of generic spatial 

modelling platforms SLEUTH (Clarke et al., 1997) and Metronamica (Van Delden and 

Hurkens, 2011), which provide well tested models for a range of applications to different study 

regions. With such generic platforms simplifying model development requirements 

significantly, research focus on the calibration of LUCA models has increased in recent years 

(e.g. Blecic et al., 2015, Cao et al. 2014, Garcia et al., 2013, Li et al., 2013, Van Vliet et al., 

2013b, Van Vliet et al., 2016). 

Calibration of a land-use change model is the process of determining a model parameter set, 

through the initial setting of model parameters, the iterative adjustment of these parameters 

based on comparison of the model output with observations, and the selection of a final 

parameter set, for application to a specific case for long term scenario analysis (adapted from 

Van Vliet et al. (2016)). The iterative adjustment stage of calibration of LUCA models is 

extremely complex, as land-use change is a path dependent process that is driven by multiple 

interdependent processes with uncertain outcomes (Brown et al., 2005). Conventionally this 

stage of calibration of LUCA models is manual (Van Delden et al., 2012), incorporating the 
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modeller’s process understanding to address this inherent uncertainty. However, 

implementation of such methods is time consuming, subjective (Jafarnezhad et al., 2016), and 

lacks transparency and repeatability (García et al., 2013). Consequently, in order to make 

parameter adjustment more efficient and repeatable, there has been an increasing focus on 

automating this process (Van Vliet et al., 2013b). 

Automatic parameter adjustment methods generally make use of formal optimisation methods 

that maximise model performance metrics (Blecic et al., 2015, Cao et al., 2014, García et al., 

2013, Li et al., 2013). Consequently, the success of these methods relies heavily on the ability 

to assess performance in a quantitative fashion. This assessment has to consider two separate 

properties of LUCA model performance: (i) locational agreement, alternatively termed cell-

by-cell agreement (Hagen-Zanker, 2009), which is the match of pixels between simulated 

outputs and the corresponding observed data (Van Vliet et al., 2013a, Hagen-Zanker, 2009), 

and (ii) landscape pattern structure, which is the inferred realism of land-use change processes 

captured by the difference between observed and simulated landscape patterns (Engelen and 

White, 2008). Consequently, automatic parameter adjustment of LUCA models can be 

considered a multi-objective optimisation problem (Hagen-Zanker, 2008). 

At present, multi-objective optimisation has only been applied to the parameter adjustment 

stage of calibration of LUCA urban growth models that are implemented with two land-use 

classes, despite the capacity of these models to consider a broader range of land-use classes, 

using the SLEUTH metrics (Trunfio, 2006) or logit regression model fitness functions (Cao et 

al., 2014). Whilst this work has merit in characterising urban and non-urban interactions, it 

represents a less complex calibration problem than LUCA models that consider multiple 

dynamic land-use classes, as these are more complex models that possess a significantly larger 

number of parameters for calibration. In contrast, studies that have used optimisation 

approaches for the calibration of LUCA models with multiple dynamic land-use classes have 

only considered a single objective. For example, Blecic et al. (2015) considered only the 

locational agreement element of performance for parameter tuning, and while García et al. 

(2013) used both locational agreement and landscape pattern structure metrics, these were 

combined into a single objective during the optimisation process, where as a result, important 

trade-offs between locational agreement and landscape pattern structure could not be 

examined. Both studies also generated only one possible model parameterisation for future 

scenario analysis, limiting the ability to understand how calibrated parameters are potentially 

influenced by the metrics used for optimisation. 
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To address these shortcomings, the objectives of this paper are (i) to present a multi-objective 

optimisation framework that automates the parameter adjustment stage of calibration of LUCA 

models with multiple dynamic land-use classes, enabling the identification of multiple model 

parameter sets that could be suitable for long-term scenario analysis; and (ii) to demonstrate 

the application of the framework on the case study comprising the Randstad region in the 

Netherlands. The remainder of this paper is organised as follows: The proposed multi-objective 

optimisation-based calibration framework is introduced in Section 2.2, followed by a 

description of an application to a case-study of Randstad in Section 2.3. The results for the case 

study are presented and discussed in Sections 2.4 and 2.5. The conclusions and 

recommendations of this work are presented in Section 2.6. 

2.2 Proposed multi-objective optimisation-based calibration framework 

The proposed multi-objective optimisation framework for calibration of LUCA models with 

multiple dynamic land-use classes is presented in Figure 2.1. As shown, the framework is 

comprised of four stages. First, in the selection stage, the components required for optimisation 

are chosen. Next, in the specification stage, to ensure an efficient and robust output, certain 

aspects prevalent to the previously selected components are specified. Following this, the 

multi-objective optimisation parameter adjustment is implemented and run to completion. 

Finally, the resulting model outputs are assessed, quantitatively evaluated using a neutral 

model, followed by heuristic interpretation of the outputs to decide on a final model parameter 

set. 

2.2.1 Selection stage 

In the selection stage, the four main components for optimisation are chosen, as shown in 

Figure 2.1: the LUCA model to be used and the parameters to be adjusted, the optimisation 

algorithm used for the parameter adjustment process, and the map comparison metrics used to 

assess model performance. 
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Figure 2.1. Proposed multi-objective optimization-based calibration framework for LUCA 

model with multiple dynamic land-use classes 
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2.2.1.1 Model and parameters 

The LUCA model determines the number and type of parameters that require adjustment. The 

parameters within LUCA models are used to capture the processes that influence land-use 

changes, such as the physical suitability of the landscape and the influence different land-use 

classes exert on each other. The consideration of multiple dynamic land-use classes, as is the 

case for transition potential models derived from White and Engelen (1993c), introduces a large 

number of parameters that must be adjusted, to capture the respective influences of each 

process on different land-use classes (García et al., 2013). The most notable example of 

parameters for transition potential models are neighbourhood rules, which characterise the 

influence different land-use classes exert on each other at different distances (RIKS, 2015). For 

example, considering a neighbourhood size of eight cells introduces 30 parameters for each 

neighbourhood rule. As the number of neighbourhood rules is the product of the total number 

of land-use classes and the number of actively allocated land-use classes, the resulting number 

of parameters that could be adjusted is large. Consequently, it is desirable to be judicious about 

which parameters to include in the automatic adjustment process. 

There are several approaches for selecting which parameters to include in the automatic 

adjustment process, including empirical understanding of the region of interest, in order to 

select the parameters that correspond to the dominant processes driving land-use change 

(Hewitt et al., 2014) and the use of quantitative analysis methods, such as data mining or 

sensitivity analysis (Li and Yeh, 2004, Wang et al., 2011b, Gibbs et al., 2012). Alternatively, 

the computational burden associated with the automatic adjustment process can be reduced by 

using empirical methods to identify reasonable values of certain parameters, such as 

neighbourhood rules (Van Vliet et al., 2013b), which can then be used to initialise the 

optimisation at a good solution, which has been shown to reduce the computational demands 

of optimisation problems in other fields (e.g. Bi et al., 2016). 

In addition to the number of parameters that require adjustment, the size of the space of 

potential parameters values that need to be explored during the automatic adjustment process, 

which is commonly referred to as the search space, is also affected by the potential ranges 

different parameters can take (Maier et al., 2014). Consequently, the upper and lower limits of 

the parameters that are included in the automatic calibration process need to be selected 

carefully, balancing the needs to ensure the best possible combination of parameter values can 

be identified with the desire to reduce the size of the search space. The size of the search space 

can also be reduced by restricting the values parameters can take to be in accordance with 
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underlying domain knowledge. For example, neighbourhood effects can be parameterised to 

generate shapes consistent with discursive knowledge (Hagoort et al., 2008), reducing the 

number of parameters from the order of thousands to hundreds (Blecic et al., 2015, García et 

al., 2013). 

2.2.1.2 Multi-objective optimisation algorithm 

As part of the proposed framework, it is suggested a population-based metaheuristic algorithm 

is used for the automatic parameter adjustment process. Such algorithms are advantageous 

because they are able to find (near) globally optimal solutions for highly complex (e.g. non-

linear, non-convex) problems, and it is straightforward to link them with existing simulation 

models, such as LUCA models, without the need for problem simplification (Maier et al., 

2015). This is because they work in an iterative fashion using a population of separate solutions, 

where the model parameters are adjusted for each member of the population based on the search 

strategy of the algorithm under consideration (e.g. survival of the fittest in the case of genetic 

algorithms or the foraging behaviour of ants in their search for food in the case of ant colony 

optimisation), and how well these adjustments perform is evaluated by running the model with 

the altered parameters. Information on how well the suggested changes have performed are fed 

back to the algorithm, informing which changes are made to the model parameters in the next 

iteration (or generation) and so on. In addition, metaheuristic algorithms have the capacity to 

handle multiple objectives (Maier et al., 2014), enabling them to optimise measures of 

locational agreement and landscape pattern structure simultaneously. 

There are a number of population-based metaheuristics (Kingston et al., 2008), which can be 

used to automate LUCA model parameter adjustment, utilising various heuristic mechanisms, 

with heuristic selection mainly due to preference. Applied algorithms include ant colony 

optimisation (Liu et al., 2012), memetic algorithms (Veerbeek et al., 2015), particle swarm 

algorithms (Blecic et al., 2015, Feng et al., 2011) and genetic algorithms (Cao et al., 2014, 

García et al., 2013, Li et al., 2013, Trunfio, 2006, Clarke-Lauer and Clarke, 2011). The 

proposed framework caters to different population-based metaheuristics, but requires an 

algorithm that can handle multiple objectives, to allow for exploration of the trade-offs between 

the objectives. 

2.2.1.3 Map comparison metrics 

As mentioned previously, optimisation requires quantifiable objectives to assess performance. 

Consequently, the proposed framework requires the selection of metrics that can quantify the 
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objectives of maximising locational agreement and minimising landscape pattern structure 

error. For locational agreement, potential metrics include percentage correct (Santé et al., 

2010), the figure of merit (Pontius Jr. et al., 2008), allocation and quantity agreement (Pontius 

Jr. and Petrova, 2010), or Cohen’s Kappa or one of its variations (Van Vliet et al., 2011, Van 

Vliet et al., 2013b). There are also many landscape pattern structure metrics (McGarigal, 2014) 

that quantify different aspects of the landscape and have been applied previously in land-use 

modelling studies. These include (amongst others) edge density (García et al., 2013), largest 

patch index (Li et al., 2013), and clumpiness (Van Delden et al., 2012). 

2.2.2 Specification stage 

As shown in Figure 2.1, this stage follows the selection stage, and requires the specification of 

certain relevant components of the model, and optimisation algorithm, to allow for effective 

optimisation. This includes how model stochasticity is taken into account, and the 

parameterisation of the selected optimisation algorithm. 

2.2.2.1 Model stochasticity 

LUCA models generally include a stochastic element to capture the variability of human 

decisions that drive land-use changes, by including a random perturbation factor in the model. 

This stochasticity must be considered appropriately to gain meaningful optimisation results. In 

order to achieve this, Guo et al. (2017) recommend using a number of model runs with different 

random seeds, but to use the same seeds during each iteration of the optimisation in order to 

ensure the impact of changing model parameters from one optimisation iteration to the next is 

not diluted or confused by the stochastic nature of the model used to assess the objective 

function values. Therefore, as part of the proposed framework, n LUCA model runs with 

different random number seeds are used to assess model performance for a given set of model 

parameters during each iteration of the automatic parameter adjustment optimisation process. 

However, the same random number seeds are used in every iteration of the optimisation process 

to ensure that any changes in the objectives from one iteration to the next are due to changes 

in model parameters, rather than a combination of these changes and randomness in LUCA 

models. 

2.2.2.2 Optimisation configuration 

Three aspects of the optimisation process must be specified prior to running the optimisation 

algorithm. First, values of the parameters that influence optimisation algorithm searching 

behaviour, such as population size, probability of cross-over and probability of mutation in the 
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case of genetic algorithms, must be defined (Zheng et al., 2016, Zecchin et al., 2012). It should 

be noted that these parameters are different from the parameters of the LUCA models that are 

to be determined with the proposed automatic parameter adjustment process. Second, 

termination criteria for the optimisation process, such as a pre-defined number of iterations or 

no significant improvement in performance, must be specified. Finally, the number of times 

the entire optimisation process has to be repeated, R, has to be specified. Such repetition is 

needed due to the stochastic nature of population-based metaheuristics, and increases the 

chance that the best possible combination of LUCA model parameters is identified and that the 

results of the automatic parameter adjustment process are robust. It should be noted that the 

stochastic nature of the optimisation process is distinct from the uncertainty associated with 

the LUCA models. While the LUCA model is run n times during each iteration of a single 

optimisation run in order to account for the stochasticity of LUCA models, the entire 

optimisation process is repeated R times to account for the stochasticity of the metaheuristic 

optimisation process. 

2.2.3 Adjustment stage 

2.2.3.1 Optimisation process 

The purpose of this stage of the proposed framework is to use the selected optimisation 

algorithm (see Section 2.2.1.2) to identify the combinations of LUCA model parameters (see 

Section 2.2.1.1) that provide the best possible trade-offs between the selected performance 

metrics (see Section 2.2.1.3). As mentioned previously, this is achieved in an iterative fashion 

by using a metaheuristic optimisation algorithm, to determine changes to the model parameters 

at each generation of the optimisation process based on resulting changes in the performance 

metrics. The steps in this process are shown schematically in Figure 2.1, and in more detail in 

Figure 2.2. 
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Figure 2.2. Population-based metaheuristic for optimisation-based LUCA model parameter 

adjustment process 

 

As can be seen in Figure 2.2, given that population-based metaheuristics are used for 

optimisation, a population of P solutions (P sets of LUCA model parameter values) is generated 

for each iteration of the optimisation process. Next, a LUCA model with each of these P sets 

of parameter values θ (the parameters selected for optimisation input into the model) is run 

from time T0 until time TN, with an actual land-use map at time T0 providing the initial 

conditions for each of the P model runs (Figure 2.1). Each simulated output map at time TN is 

quantitatively compared with a corresponding map of actual land-use using the metrics in the 

comparison set selected previously; one to assess locational agreement and another to assess 

the error of landscape pattern structure. As mentioned previously, given the stochastic nature 

of land-use change, each of the P land-use models is run with n different random number seeds, 

generating n simulated land-use maps, each of which is individually compared with the 

corresponding map of actual land-use. The performance of each model with the P sets of 

selected model parameters is quantified by taking the average of the metric values across the n 

different outputs (Figures 2.1 and 2.2). Hence, the final metric value for one member of the 

population of the metaheuristic is given by the following objective: 
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where LAp is the locational agreement objective function value of the member of the population 

p, θ are the input parameters corresponding to that member of the population, and n is the 

number of LUCA model random number seeds being considered. Similarly, for landscape 

pattern structure: 
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where LPSp is the landscape pattern structure error objective function value of the member of 

the population p, and n is the number of LUCA model random number seeds. 

As mentioned previously, when metaheuristic optimisation algorithms are used, θ values are 

optimised in an iterative fashion with the aim of improving the performance metrics from one 

generation to the next. Consequently, the above steps are repeated for a total of G generations 

(Figure 2.2) until the desired stopping criteria have been met (see Section 2.2.2.2). Finally, as 

also mentioned previously, each optimisation run is repeated R times to account for the 

stochastic nature of the searching behaviour of population-based metaheuristics.  

As parameter adjustment is a multi-objective optimisation problem, the optimisation process 

does not generate a single set of model parameters. Rather, the optimisation generates a series 

of model parameter sets that generate optimal, non-dominated trade-offs between the two 

objectives. The output of the optimisation is shown in Figure 2.1 by the curve called the, 

“Pareto front of objectives.” The Pareto front indicates the optimal trade-off between 

objectives, where improved performance in one objective cannot be achieved without inferior 

performance in the other objective. 

2.2.3.2 Implementation 

The proposed optimisation process is very computationally expensive, because of the relatively 

long simulation times associated with running LUCA models (e.g. run times can vary from 10 

seconds to 10 minutes, depending on the number of classes, spatial extent and resolution) and 

the large number of simulations required, as illustrated in Figure 2.2. For example, for typical 

values of P=200, n=10, G=500 and R=5, the LUCA model would have to be run 200 ∙ 10 ∙ 500 

∙ 5=5,000,000 times, resulting in a total run time ranging from 50,000,000 to 3,000,000,000 

seconds, or 600 to 35,000 days, for individual LUCA model run times of 10 and 600 seconds, 

respectively, which is not feasible from a practical perspective. However, as has been discussed 
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in other problem domains, there are a number of avenues for increasing the computational 

efficiency of this process, including the incorporation of heuristic information to reduce the 

size of the search space (Szemis et al., 2012, and Section 2.1.1) or to improve the efficiency of 

the optimisation process (Nguyen et al., 2016), by using meta-models as surrogates for the 

computationally expensive LUCA models (Broad et al., 2015) or the use of parallel computing 

resources (Blecic et al., 2015). By using these approaches, automatic parameter adjustment 

methods can be made feasible for application to complex LUCA models. 

2.2.4 Assessment stage 

To determine the final calibrated model, the resultant model parameter sets corresponding to 

different Pareto front solutions are assessed using a comprehensive set of methods that have 

been used in similar calibration studies (Van Vliet et al., 2013b, Hewitt et al., 2014) including 

assessment of objective output using a neutral model benchmark test, and a final evaluation 

comprising heuristic interpretation of the solutions and parameter values obtained. 

2.2.4.1 Neutral model benchmark test 

An issue with calibrating LUCA models is the impact of boundary conditions. Due to land-use 

commonly persisting, metrics often indicate good model performance, though this can largely 

be due to limited variation of the final landscape from the initial situation (Hagen-Zanker and 

Lajoie, 2008). Hence, the proposed framework uses a neutral model benchmark test to evaluate 

the output in the objectives space, to determine which model parameter sets have captured land-

use change processes appropriately. This is illustrated by the black lines over-laid on the Pareto 

front in the assessment stage in Figure 2.1. A model that outperforms the benchmark (i.e. 

generates superior metric values) is considered valid, because model performance can be 

attributed to correct capture of processes, rather than inherent land-use persistence (Hagen-

Zanker and Lajoie, 2008). 

2.2.4.2 Final evaluation 

A final evaluation of the optimisation results is performed by assessing the solution and 

parameter spaces (Figure 2.1). This can be performed by a modelling expert, or in a 

participatory manner, where stake-holders are included in the evaluation to decide on the most 

appropriate model, as with manual calibration (Hewitt et al., 2014). Evaluation of the solution 

space refers to interpreting the land-use maps generated by the different model parameter sets, 

corresponding to different solutions along the Pareto front. Evaluation of the parameter space 

refers to assessing the parameters corresponding to the different solutions, to determine if these 



24 

 

are consistent with expected land-use change processes of the study region. By doing so, a final 

model parameter set can be recommended. 

2.3 Case study application of proposed framework 

The proposed framework outlined in Section 2.2 is applied to a real-world case-study of the 

Randstad region in the Netherlands from 1989 to 2000. Randstad is a conurbation of the four 

largest cities in the Netherlands and the surrounding region. The model for the case study region 

has a 500-metre resolution and covers a spatial extent of 14,175 km2, shown in Figure 2.3. 

Figure 2.3. Location of the Randstad region and rasterized map for 1989 

 

2.3.1 Selection stage 

2.3.1.1 Land-use model 

The transition potential LUCA model Metronamica is used (Van Delden and Hurkens, 2011). 

Metronamica is a generic modelling platform, evolved from the pioneer model by White and 

Engelen (1993c) that facilitates direct application to the study region of interest, capturing the 

dynamics between urban and regional systems (RIKS, 2015), which is able to consider multiple 

dynamic land-use classes. It has been used successfully in numerous decision support systems 

in diverse global regions, such as the regional and national socio-economic policies in the 

Netherlands (Engelen et al., 2003), long-term regional planning in Waikato, New Zealand 

(Rutledge et al., 2008), river basin management for Mediterranean watersheds (Van Delden et 
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al., 2007), assessment of the impact of intra-urban land prices (Furtado et al., 2012), impact 

assessment of agricultural policies in Europe (Van Delden et al., 2010) and modelling shifting 

cultivation practises in Sri Lanka (Wickramasuriya et al., 2009). 

In Metronamica, a transition potential is used to allocate land-use classes, calculated to update 

land-use at each time step, using various factors to define the potential for each cell to support 

each land-use class considered. Land-use classes are allocated until all demand requirements 

are met (demands for particular land-uses are exogenously defined), based on the transition 

potential for each given class, or until there are no locations available. Metronamica considers 

three land-use class categories: active, which are dynamically modelled and allocated 

(commonly urban classes); features, which are fixed land-uses that influence landscape 

dynamics but do not have dynamic behaviour (such as airports or water bodies); and passive, 

which occupy the remaining landscape and change in extent as a result of changes to the other 

categories. These are normally occupied with land-use types that have low transition costs (for 

example agricultural land). The Metronamica model developed for the Randstad case-study 

has ten land-use classes. There are seven active, Greenhouses, Residential, Industrial, Services, 

Socio-cultural uses, Nature and Recreation areas; one passive, Agriculture; and two features, 

Airport and Water. 

To determine the transition potential, Metronamica considers four processes: accessibility, the 

provision of infrastructure required for certain land-use classes; suitability, the influence of 

physical factors; neighbourhood effects, the spatial interactions between land-use classes 

representing the behaviour of actors and activities taking place on those classes; and zoning, 

the influence of spatial planning. A stochastic component is also included to incorporate the 

inherent uncertainty of land-use change decisions. The transition potential is calculated by: 

 𝑇𝑃𝑐,𝑘 =  𝐴𝑐,𝑘 ∙  𝑆𝑐,𝑘  ∙  𝑁𝑐,𝑘  ∙  𝑍𝑐,𝑘 ∙ 𝛾 (2.3) 

where TPc,k is the transition potential for the cell c to support land-use class k (subscripts for 

all symbols above have the same interpretation), Ac,k is the accessibility, Sc,k is the suitability, 

Nc,k is the neighbourhood effect, Zc,k is the zoning influence, and γ is the stochastic component, 

the form of which is given in the Metronamica documentation (RIKS, 2015). This 

documentation also includes further details of the transition potential and underlying equations 

for each process. The Metronamica model developed for Randstad includes two accessibility 

layers; motorways and other roads. Four physical attributes are included for suitability; noise, 
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elevation, natural hydrology and slope. Zoning for ecological corridors, the Noise contour for 

Schiphol and urban expansion plans are also included. 

2.3.1.2 Parameters 

As the case study is a region of urban growth with a short time span, the main sources of land-

use conversion will relate to the expansion of the existing socio-economic land-uses. Hence, 

the major processes driving land-use changes will be the self-organising behaviour of the 

system for increased expansion of the urban cores (Couclelis, 1989, Batty and Longley, 1994, 

White and Engelen, 1993a, White and Engelen, 1993b). As a result, the most important 

processes to include for tuning are those driving this behaviour, the neighbourhood interactions 

and accessibility (Verburg et al., 2004). Consequently, parameters for neighbourhood rules and 

accessibility are included for automatic tuning. 

Neighbourhood rules are parameterised to define the influence that different land-use classes 

exert on each other. The cumulative transition potential due to neighbourhood influence for the 

conversion from one land-use to another is calculated by:  

 

𝑁𝑐,𝑘 = ∑ 𝑤𝑘,𝐾(𝑐′),𝑑(𝑐,𝑐′)
𝑐′∈𝐷(𝑐)

 (2.4) 

where Nc,k is the neighbourhood transition potential for cell c transitioning to land-use type k, 

D(c) is the set of all cells in the neighbourhood of the cell of interest c, K(c’) is a look-up 

function that returns the land-use class for cell c, d(c,c’) is the distance between cells c and c’, 

and wk,j(x) expresses the influence that a cell with land-use class j, returned by the look-up 

function K(c’), exerts on a cell of potential land-use class k at a linear distance of x between 

the two cells. 

Accessibility defines the importance of infrastructure elements for different land-use classes, 

parameterised as: 

 

𝐴𝑐,𝑘 = 

{
 
 

 
               

𝑎𝑠,𝑘
𝐷𝑠,𝑐 + 𝑎𝑠,𝑘 

     if 𝑎𝑠,𝑘 > 0

                     0                if 𝑎𝑠,𝑘 = 0

  1 − 
|𝑎𝑠,𝑘|

𝐷𝑠,𝑐 + |𝑎𝑠,𝑘| 
    otherwise

 (2.5) 

where Ds,c is the cellular distance between cell c and the nearest cell containing the type of 

infrastructure s, and as,k is the accessibility decay parameter that expresses the importance of 

the type of infrastructure s to land-use k. Values for as,k, and a weighting parameter are tuned 
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for each actively allocated land-use class k, and each infrastructure type s. For this case-study 

28 parameters are tuned for accessibility, because there are 7 actively allocated land-use 

classes, and 2 types of infrastructure layers (motorways and other roads). 

To reduce the size of the search space during the automatic parameter adjustment stage, the 

neighbourhood rules are delineated into two specific parts, as shown in Figure 2.4: the locus 

point (dot), which defines the inertia (self-influential rules) or conversion (interactive rules) of 

the location of interest; and the tail (line), which defines the interaction effects for different 

distances. There are several common shapes that the neighbourhood rule tails can take (Van 

Vliet et al., 2013b, Hagoort et al., 2008). The most common forms are characterised by a high 

influence at shorter distances, a point of inflection, and a slow, gradually decaying influence 

over large distances. To capture such dynamics, this research parameterises neighbourhood 

effect tails using exponential decay functions, thereby reducing the number of parameters that 

require calibration, of the form: 

 

𝑦(𝑥) =  {
𝑐 for 𝑥 = 0

𝑎𝑒−𝑏𝑥  for 0 < 𝑥 ≤ 𝑥𝑐
0  for 𝑥 > 𝑥𝑐

 (2.6) 

where a and b are the controlling parameters of the neighbourhood rule, x is the distance, y(x) 

is the influence value, c is the locus point of persistence and conversion, and xc is the critical 

distance where the influence is set to zero. For each neighbourhood rule, three parameters are 

tuned, a, b and c. For this case-study, there are 10 land-use classes and 7 dynamic land-use 

classes, hence 70 neighbourhood rules are included for adjustment. By parameterising 

neighbourhood rules using exponential decay functions, 210 parameters are tuned for 

neighbourhood rules. Hence, a total of 238 parameters are tuned as part of the adjustment 

process for this case study. 
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Figure 2.4. Parameterisation of a neighbourhood effect using exponential decay function, a 

locus point and critical distance 

 

2.3.1.3 Multi-objective optimisation algorithm 

This research uses the Non-dominated Sorting Genetic Algorithm II (NSGA-II) first proposed 

by Deb et al. (2002), which is a population-based Multi-Objective Genetic Algorithm (MOGA) 

regarded as an industry standard (Wang et al., 2015) with a demonstrated ability to tune LUCA 

model parameters (Cao et al., 2014, Trunfio, 2006). The MOGA is used to find multiple 

alternative LUCA parameter sets that represent the best possible trade-off between the 

calibration objectives, the Pareto front of solutions, illustrated in Figure 2.1 by the curved blue 

line. 

MOGAs use simple heuristics (computationally efficient rules) across a number of generations, 

to derive information about which decision variable values result in better performing 

objectives, and use this information about the present (parent) population to generate the next 

(child) generation of solutions, some of which are likely to have superior objective function 

values. The heuristics mimic those of, ‘survival of the fittest,’ and are referred to as selection, 

cross-over and mutation. Selection is used to promote better performing solutions to the 

subsequent generations, by comparing different solutions and selecting, by some mechanism, 

those which perform better. Cross-over takes a subset of decision variable values from a pair 

of parent solutions and randomly recombines them to form new child solutions. The purpose 

is to exploit good solutions, as better performing decision variable values from the parents, 

when combined differently, may result in children with superior performance. This is governed 

by the probability of cross-over, which is set prior to optimisation. Mutation takes a small 
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subset of decision variable values in a child and perturbs them, the purpose of which is to 

diversify the search to explore a wider possible range of solutions, which might lead to superior 

objective function values.  

The specific MOGA operators employed by the NSGA-II, as well as the additional features 

that distinguish it from conventional MOGAs, are illustrated in Figure 2.5. As shown, NSGA-

II begins with an initialisation step, where an initial population of solutions with randomly 

generated decision variable values is created. The associated objective function values are then 

calculated. Next, the standard genetic operators previously discussed (selection, cross-over, 

mutation) are used to generate a child population from the existing parent population. This 

implementation of NSGA-II uses tournament selection, simulated binary cross-over, and 

polynomial mutation, as implemented by Deb et al. (2002), because this problem uses real-

value decision variables. 

Figure 2.5. Optimisation process performed by NSGA-II, the parent population (P) is 

modified to generate a child population (Q), then recombined and modified further to 

produce the parent population (P’) of the next generation 
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The key performance advantage of using NSGA-II is achieved via the additional operators 

implemented in the algorithm, which preserve non-dominated (i.e. the best performing) 

solutions from generation to generation. As shown in Figure 2.5, NSGA-II recombines the 

parent (P) and child (Q) populations, and ranks the combined population in order of non-

dominated fronts that occur, which are a series of Pareto fronts. From this, a new parent 

population (P’) is formed, by iteratively selecting the solutions belonging to the best fronts. If 

only a subset of solutions from a front can be included, crowding distance sorting is used, 

which aims to select the most diverse set of solutions from the final front that is included. This 

process is repeated until the stopping criteria are met. 

2.3.1.4 Map comparison metrics 

For the case study, locational agreement is measured using Fuzzy Kappa Simulation (FKS) 

developed by Van Vliet et al. (2013a). The FKS metric is an adaptation of Cohen’s Kappa 

(Santé et al., 2010, Van Vliet et al., 2016), which measures the fuzzy agreement of location 

and class between two data sets relative to a baseline of random allocation: 

 
𝐹𝐾𝑆(𝜃) =  

𝑃𝑂(𝜃) − 𝑃𝐸(𝜃)

1 − 𝑃𝐸(𝜃)
 (2.7) 

where PO(θ) is the observed agreement, the similarity of the simulated land-use transitions 

with the observed land-use transitions, and PE(θ) is the expected agreement, the agreement 

obtained from a random allocation of the given class transitions relative to the initial land-use 

map. FKS is used because it measures the agreement of land-use transitions, and hence includes 

an implicit baseline. It also uses fuzzy interpretation, which attributes partial agreement relative 

to proximity. In this research, partial locational agreement of correct transitions is considered 

for a neighbourhood radius of two cells, with strength of agreement using a halving distance 

of one. Hence, the locational agreement measure for a single member of the population (LAp(θ)) 

is equivalent to FKS agreement, averaged across the total number of random number seeds 

considered. 

To assess the error of landscape pattern structure, the average of the absolute class level 

clumpiness error between actual and simulated values is used. This metric is used based on 

successful previous applications as a part of the manual parameter tuning of LUCA models 

(Van Delden et al., 2012). Clumpiness is an aggregation metric that measures the proportional 

deviation of the proportion of like adjacencies involving the corresponding class from what is 

expected under a spatially random distribution (McGarigal, 2014). It is calculated first by 

determining the proportion of like adjacencies: 
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 𝐺𝑘 = 
𝑔𝑘𝑘

∑ 𝑔𝑘𝑙 −min 𝑒𝑘
𝐿
𝑙=1

 (2.8) 

where Gk is the proportion of like adjacencies for land-use class k, gkl is the count of like 

adjacencies between patches of class k and l using the double-count method (McGarigal, 2014), 

L is the total number of land-use classes, min-ek is minimum perimeter of a maximally clumped 

patch of class k, defined as: 

 
min 𝑒𝑘 = {

4𝑛
4𝑛 + 2
4𝑛 + 4

 
𝑛2 = 𝑎𝑘 

𝑛2 < 𝑎𝑘 ≤ 𝑛(1 + 𝑛) 
𝑎𝑘 > 𝑛(1 + 𝑛) 

(2.9) 

where ak is the area of class k (in terms of number of cells), and n is the length of a side of the 

largest integer square possible with a smaller area than ak. With the proportion of like 

adjacencies calculated, it follows that clumpiness is calculated by: 

 

𝐶𝐿𝑈𝑀𝑃𝑌𝑘 = 

{
 

 
𝐺𝑘 − 𝑃𝑘
𝑃𝑘

  

𝐺𝑘 − 𝑃𝑘
1 − 𝑃𝑘

 

 

for 𝐺𝑘 < 𝑃𝑘  and 𝑃𝑘 < 0.5 
 

otherwise                               

(2.10) 

where Pk is the proportion of the landscape occupied by patch type (class) k. As clumpiness is 

calculated at the class level, it is aggregated by taking the average across the dynamic land-use 

classes. Hence, for this case study, landscape pattern structure error is given by the average 

error between the observed and simulated clumpiness values (ΔCLU) for the seven actively 

allocated land-use classes, averaged across the total number of random number seeds 

considered. 

2.3.2 Specification stage 

2.3.2.1 Model stochasticity 

Stochasticity in the Metronamica model is accounted for by calculating the map comparison 

metrics using ten stochastically generated replicates of simulated land-use maps for each 

iteration of NSGA-II (i.e. n=10) in accordance with Equations 2.1 and 2.2.  

2.3.2.2 Optimisation configuration 

Although it is generally recommended to fine tune the parameters controlling the searching 

behaviour of the optimisation algorithm, such as the population size, the probability of mutation 

and probability of cross-over, via sensitivity analysis before application, for large problems, 

this is extremely computationally expensive and therefore impractical (Wang et al., 2015). As 

this research falls into this category of problems, recommended NSGA-II parameter values are 

adopted (Zheng et al., 2016, Wang et al., 2015), namely a probability of crossover of 0.9 and a 
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probability of mutation equalling the inverse of the number of decision variables, 0.0042 in 

this case. The selection of population size, which corresponds to how many chromosomes 

would be included per generation, is also informed by the work of Wang et al. (2015) into 

optimisation problems with many decision variables. Their results show that the population 

size for large problems must be greater than the number of problem decision variables to find 

non-dominated solutions. Hence, this research uses a population size of 256 (i.e. P=256). 

The stopping criterion adopted is based on solution convergence, and reaching a certain number 

of generations. The required number of generations used is 500 (i.e. G=500). Convergence 

implies that, for the given optimisation algorithm configuration, negligible improvement is 

obtained in the objective space with continued optimisation. There are numerous metrics for 

measuring convergence (Maier et al., 2014). This research uses the hyper-volume metric 

(Zitzler, 1999), a commonly employed metric of multi-objective performance (Reed et al., 

2013, Hadka and Reed, 2012) that captures convergence and diversity of the objective space. 

The solutions are considered to have converged when there is negligible improvement in the 

hyper-volume for 50 generations, defined as less than 0.5% improvement in the hyper-volume 

metric. The results for all optimisation runs show that the use of 500 generations is sufficient 

for hyper-volume convergence corresponding to a 0.5% change. 

Given the computational demands of the framework, five different optimisation seeds are used 

(i.e. R=5). Following the convergence of the five optimisation runs, the Pareto optimal 

solutions are combined to identify the best overall front, as is commonly done in multi-

optimisation studies (e.g. Wu et al., 2012) . 

2.3.3 Adjustment stage 

2.3.3.1 Implementation 

For the proposed case-study, running the optimisation on an Intel i5-347OS CPU core 

processor, a single evaluation took approximately 6 seconds (i.e. a single run of the 

Metronamica model). Consequently, extrapolating this out to a complete optimisation run, the 

total computational time would be approximately P ∙ n ∙ G ∙ R ∙ 6 = 256 ∙ 10 ∙ 500 ∙ 5 ∙ 6 = 444.4 

days. Hence, to make the optimisation process feasible from a practical perspective, a 

parallelised version of NSGA-II is implemented, to increase computational efficiency. This 

uses the Phoenix cluster, a high-performance computing facility operated by Research Services 

at the University of Adelaide. The separate optimisation runs are parallelised by distributing 

the 256 evaluations, one for each member of the population, over 129 CPU processing cores 
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across eight computational nodes. For the Phoenix cluster, each computational node consists 

of 2 Xeon E5-2698v3 chipsets each containing 16 cores. To control the parallelisation, a 

master/slave model of computation is implemented, wherein 128 slave processes running on 

separate cores are used in parallel to evaluate the objective functions for separate members of 

the population, and the 129th is the master process that coordinates the search and runs the 

recombination (that is the selection, crossover, mutation, non-dominated sorting and crowding 

distance operators). Parallelisation is achieved using the Message Passing Interface (MPI) 

using asynchronous communication to improve algorithm efficiency. Using MPI, the master 

process passes messages containing a set of decision variable values (a LUCA model parameter 

set) to each of the slaves. Upon receiving this message, the slave runs the LUCA model, 

evaluates the calibration objectives, and passes a message back to the master containing these 

objective values. Through this allocation, near linear speedup is achieved as communication 

time is orders of magnitude lower than time taken to evaluate the calibration objectives, with 

NSGA-II completing 500 generations within 48 hours. Code, in C++, for this implementation 

of the NSGA-II is fully open sourced and available as per the details in the software availability 

section of this paper. 

2.3.4 Assessment stage 

2.3.4.1 Benchmark test 

The benchmark test is conducted by applying two neutral models, the growing clusters (Van 

Vliet et al., 2013b) and random constraint match (RIKS, 2010) neutral models, which generate 

maps of the region according to two different growth strategies. As FKS includes an inherent 

baseline by only considering transitions (Van Vliet et al., 2013a), a benchmark value of 0 is 

used for FKS. Neutral model benchmark testing is used to evaluate solutions with respect to 

the landscape pattern structure error. For consistency, the clumpiness of the active classes (the 

optimisation objective) from five different growing cluster neutral model outputs is averaged, 

and the error between this and the observed clumpiness for the year 2000 taken as the 

benchmark landscape pattern structure metric value. Outputs of the optimisation routine with 

less error than this value are assumed to have captured model processes adequately, and are 

considered for the final evaluation. 

2.3.4.2 Final evaluation 

A final evaluation of the model parameter sets is conducted by reviewing the solution maps 

and model parameters obtained after application of the benchmark test in conjunction with an 

experienced land-use modeller. Through a collaborative evaluation of these solutions, a final 
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model parameter set is decided upon based on heuristic evaluation, combining understanding 

of both the model and study region. 

2.4 Results 

This section presents and evaluates the results of the multi-objective optimisation framework 

application to the Randstad case study. This comprises three parts, as shown in Figure 2.1. 

First, the resultant Pareto front is evaluated, to assess the trade-off found between the metrics 

and the number of solutions that pass the benchmark test. Second, the solution space is 

assessed, by heuristic evaluation of the simulated output maps. Third, the parameter space is 

evaluated, through heuristic interpretation of the trends in the parameter values observed across 

the Pareto front, as well as the interaction between different parameters. The results are not 

compared with a more common manual calibration method, due to the complexity and highly 

subjective nature of such an approach. 

2.4.1 Identified Pareto optimal solutions 

The Pareto front comprised of non-dominated solutions from the five optimisation runs is 

shown in Figure 2.6. In total, 77 Pareto optimal solutions were identified, each corresponding 

to a model parameter set that generated non-dominated metric values. The output metric values 

are coloured for each parameter set, with metric values for 10 independent simulations shown 

for each, illustrating the influence of simulation stochasticity. Red points correspond to 

parameter sets that generated a low ΔCLU and low FKS agreement, blue points correspond to 

parameter sets that balance the objectives, and pink points show parameter sets that resulted in 

a relatively high ΔCLU and a relatively high FKS agreement. The black points show solutions 

that were analysed in further detail to determine a final model parameter set (see Section 2.4.2). 
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Figure 2.6. Composite Pareto front from the five optimisation runs, consisting of 77 solutions 

for parameter sets generating non-dominated objectives. The solutions are ordered by 

ascending FKS value (see colour bar) where the scatter of points arises from 10 independent 

model runs for each parameter set. The solid black line shows the averaged objective values 

over the 10 independent model runs. The dashed black lines show the calculated benchmark 

metric values for the growing clusters neutral model (lower) and random constraint match 

neutral model (higher). The five black dots show the solutions that are analysed in detail. 

 

As shown in Figure 2.6, there was a meaningful trade-off between the two objectives used. 

Values of the average absolute clumpiness error across the actively allocated land-use classes 

varied from 0.001 to 0.067, and values of FKS ranged from approximately 0.169 to 0.222, with 

a reasonably uniform distribution of points in-between the extremes. The solutions generated 

corresponded with (the more commonly used) Kappa values between 0.758 and 0.789, 

comparable with other calibration studies (Cao et al., 2015, Chaudhuri and Clarke, 2013a, 

García et al., 2013, Jafarnezhad et al., 2016). 

To filter the Pareto front solutions based on objective performance, following the proposed 

framework, performance was compared to the two baseline models presented in Section 

2.3.4.1. The two horizontal, dashed black lines show the benchmark metrics values calculated 

for average absolute clumpiness error, where the line of ΔCLU = 0.060 corresponding to the 

random constraint match benchmark metric value, and the line of ΔCLU = 0.018 corresponding 

to the growing clusters benchmark metric value. Of the parameter sets obtained, 74 resulted in 

superior performance to the random constraint match neutral model, and 50 resulted in superior 
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performance to the growing clusters neutral model. All solutions were considered valid with 

respect to FKS, as all had FKS agreement values greater than 0. 

Figure 2.6 also shows the importance of considering model stochasticity as part of the 

automated adjustment process. The independent simulation objective values vary considerably 

from the average performance value, shown by the black line, with a noticeable increase in the 

spread of the independent solutions from the average for Pareto front solutions with higher 

FKS values. This variation is attributed to the influence of the stochastic factor which 

characterises the degree of randomness that is built into the land-use allocation for each model 

realisation (see transition potential definition in Equation 2.3) This highlights the need to 

consider model stochasticity appropriately when using automatic parameter tuning methods, 

as not doing so would result in over-calibration to a single model realisation. 

2.4.2 Simulated output maps 

Following the assessment of the obtained Pareto front, this section presents an evaluation of a 

subset of the Pareto front solutions obtained following benchmark testing. The simulated output 

maps generated by certain parameter sets corresponding to the selected Pareto front solutions, 

shown by the black dots in Figure 2.6, were assessed to obtain a better understanding of the 

nature of the trade-off between the two objectives, by considering how the trade-off is reflected 

in the simulated output maps. Five Pareto front solutions were evaluated, with metric values 

given in Table 2.1. The selected solutions correspond to parameter sets that resulted in the 

lowest average values of FKS agreement, and lowest average values of ΔCLU, the highest 

average value of FKS agreement with the highest average values of ΔCLU that passed the 

benchmark test, and three intermediate solutions, approximately equally spaced with respect to 

the map comparison metrics. The corresponding simulated output maps are presented in Figure 

2.7. For each figure, an enlarged version of the area in the black square in the left-hand panel 

is shown in the right-hand panel to highlight an area of significant change. 

Table 2.1. Metric values of Pareto front solutions for which simulated output maps were 

evaluated 

Pareto Front 

solution 

FKS ΔCLU Corresponding 

map 

1 0.173 0.002 Figure 2.7b 

9 0.181 0.003 Figure 2.7c 

23 0.190 0.006 Figure 2.7d 

36 0.201 0.009 Figure 2.7e 

50 0.209 0.017 Figure 2.7f 
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Figure 2.7. Comparison of selected simulated output maps corresponding to Pareto front 

solutions listed in Table 2.1 with data (a-1 and a-2). The maps are organised by increasing 

FKS values. 

 

The variation between the simulated output maps can be largely attributed to the amount of 

interspersion observed between the different classes. The simulated output maps for parameter 

sets that achieved superior ΔCLU performance, shown in Figures 2.7b and 2.7c, exhibit larger 

clusters of the socio-economic land-use classes, such as residential (red), industrial (purple), 

and recreation areas (dark-yellow). The simulated output maps for parameter sets that 

achieved superior FKS performance, such as Figures 2.7d, 2.7e and 2.7f, exhibited an 

increasingly large amount of interspersion of these land-use classes. The most notable 

examples can be seen with the interspersion of recreation areas amongst clusters of residential 

land-use throughout the map, also shown in Figures 2.7d-2, 2.7e-2 and 2.7f-2. There is also a 

growing presence of socio-cultural uses (pink) interspersed amongst greenhouses (orange) for 
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these simulated output maps, and a large cluster comprised of greenhouses and residential land 

uses that grows with improving FKS performance. 

From visual inspection of the simulated output maps and comparison with the data, certain 

solutions could be rejected, despite passing the benchmark test, due to the patterns generated 

being too inconsistent with the data. For example, the solutions corresponding to maps shown 

in Figure 2.7d, 2.7e and 2.7f, are considered unsuitable due to the over-interspersion of the 

socio-economic land-use classes, which are not observed in the data. It appears that the use of 

FKS placed an over-emphasis on generating transitions, which resulted in the patterns observed 

in the simulated output maps being inconsistent with the data. 

To evaluate this, the Kappa and Fuzzy Kappa metrics, more commonly used locational 

agreement metrics in calibration studies (e.g. Cao et al. (2015), Chaudhuri and Clarke (2013a), 

García et al. (2013), Wickramasuriya et al. (2009), Hagen-Zanker (2009)), that consider the 

entire landscape, were calculated. Values between 0.758 and 0.789 for Kappa and 0.828 and 

0.854 for Fuzzy Kappa were obtained for the solutions generated. For Kappa, a benchmark 

value of 0.789 was calculated for the growing clusters neutral model, which is outperformed 

by only one solution, and 0.774 for the random constraint match neutral model, which is 

outperformed by 19 solutions, which corresponded to solutions that generated lower FKS 

values. For Fuzzy Kappa, a benchmark value of 0.869 was calculated for the growing clusters 

neutral model, which is not outperformed by any of the solutions, and 0.828 for the random 

constraint match neutral model, which is outperformed by 71 solutions. Such performance, 

with fewer solutions outperforming baseline metric values, is consistent with the over-

emphasis on the agreement of transition cells with the use of the FKS metric to measure 

locational agreement. 

2.4.3 Parameter variation along Pareto front 

This section presents an analysis of the parameters corresponding to the different Pareto front 

solutions (coloured by solution as shown in Figure 2.6), to evaluate the interplay between 

different parameters and determine if this is consistent with process understanding, and to 

provide insight into how the preference for the different objectives was achieved through 

different parameter value settings. Given the large number of parameters in the LUCA model 

that were tuned (238), key parameters corresponding to the Pareto front solutions evaluated in 

Section 2.4.2 have been selected for detailed consideration: The inertia parameters for each 

land-use class; the conversion parameters for transitions to the class residential; the tails of the 
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interaction rules for transitions to the class residential; the interactions (conversion parameters 

and tails) between greenhouses and socio-cultural uses; and the distance decay parameters for 

the accessibility. 

Figure 2.8 shows the inertia parameter values (the c value in Equation 2.6) for the self-influence 

rules, ordered and coloured by the Pareto front solution. As can be seen, there are trends in the 

parameters generated by the optimisation process. For the land-use classes services (SER) and 

socio-cultural uses (SCU), the optimisation process resulted in high influence values, relative 

to the values for the other land-use classes, across all five solutions evaluated. Hence, it can be 

concluded that both objectives where optimised when these land-use classes were relatively 

inert. For the other classes, the optimisation process generated a residential (RES) inertia value 

that was relatively high for solutions that favoured ΔCLU (i.e. solutions 1 and 9), whereas the 

optimisation process resulted in all other classes having a relatively low inertia value, that was 

relatively constant between classes. However, for solutions that balance both objectives 

(solution 23), the inertia for residential drops to a relatively low value whilst the classes 

industry (IND), nature (NAT) and recreation areas (REC) jump to relatively higher values, a 

trend that persists for solutions favouring FKS (solutions 36 and 50). This suggests that, to 

generate better FKS values, there must be more transition from the class residential. This is 

reflected in data and confusion matrices for each solution (Supplementary material 2A). 

However, such a result is in conflict with common understanding of land-use dynamics, where 

the large initial investment required for urban classes, such as residential (Van Vliet et al., 

2013b), means socio-economic land-use classes generally have relatively high inertia values, 

given the high associated transition costs. Additionally, the high inertia of the class nature also 

conflicts with common understanding of land-use dynamics, as natural areas are more often 

preserved due to zoning regulations (e.g. Van Delden et al., 2007)   as opposed to being inert, 

as shown in Figure 2.8. Hence, the Pareto front solutions analysed exhibit certain inertia values 

that are consistent with expectation, such as residential for solution 1 and industry for solution 

50. Other inertia values, such as the industry for solution 1 as well as residential and nature for 

solution 50, are not. 
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Figure 2.8. Variation of inertia parameter values for self-influence neighbourhood rules 

across Pareto front solutions 

 

Figure 2.9 shows the values of the conversion parameter (the c value in Equation 2.6) for the 

interaction rules for different land-use classes converting to the class residential, ordered and 

coloured by the Pareto front solution. Generally, solutions favouring FKS exhibited higher 

conversion values, to generate more conversions to the class residential, which were exhibited 

in the data (see Supplementary material 2A). The trends shown in Figure 2.9 were also found 

for other conversion parameters. As shown, the optimisation process resulted in certain 

conversion parameters that did not exhibit any particular trend across the solutions, for 

example, the conversion from industry to residential, which has a relatively constant value for 

solutions 1 and 9 that favour ΔCLU and solutions 36 and 50 that favour FKS, but a negative 

value for solution 23. A trend that was observed was that the optimisation process generated 

parameters that changed sign from negative to positive, as Pareto front solutions shifted from 

favouring ΔCLU to FKS, to promote certain conversions. Conversion from greenhouses, 

recreation areas, and services to residential are negative for solutions 1 and 9 that favour 

ΔCLU, preserving the landscape pattern by minimising potential conversions. Moving to 

solutions 23, 36 and 50, the optimisation process has resulted in positive parameter values, with 

increasing magnitude, to promote more conversions. 
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Figure 2.9. Variation of the conversion parameter influence values across Pareto front 

solutions for transitions from all land-use classes to the class residential 

 

The tail parameters (the calculated y(x) value in Equation 2.6) corresponding to the 

neighbourhood rules exhibited similar trends to the conversion parameters, examples of which 

are illustrated for the influence of different land-use classes in the neighbourhood of the class 

residential, presented in Supplementary material 2B. There were certain neighbourhood rules 

that were tuned to relatively constant forms across the solutions, such as the weak attractive 

influence for the presence of industry in residential locations, likely due to both being socio-

economic land-use classes. Other rules exhibited a trend across the solutions of an increasing 

attractive or repulsive strength, an example of which is shown in Figure 2.10, for the attraction 

of residential location in the neighbourhood of other residential locations. As shown, the 

attractive influences increase from relatively low values for solutions favouring ΔCLU to 

relatively high values for solutions favouring FKS. There were also rules, such as the presence 

of nature in the neighbourhood of residential land-uses, which displayed no trend across the 

solutions. Solutions 1 and 9 that favoured ΔCLU, and solutions 36 and 50 that favoured FKS, 

both featured a repulsive influence, but solution 23, which balances the two objectives, features 

a weak attractive influence. 
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Figure 2.10. Variation of the neighbourhood rule tails across Pareto front solutions for the 

influence of the class residential in the neighbourhood of the class residential 

 

Examination of neighbourhood rules also provides insight into the unexpected model 

behaviour exhibited in the results maps, such as the large clusters of socio-cultural uses and 

greenhouses interspersed between each other in solutions 23, 36 and 50, highlighted in Figures 

2.7d, 2.7e and 2.7f. Such behaviour could either result from higher conversion values, the c 

parameter, or a strong, attractive influence between the two classes, as a result of the a and b 

parameters (Equation 2.6). The conversion values, as well as the influence values at a distance 

of one, are presented Table 2.2, to indicate the resultant influence different land-use classes 

have on each other across the different solutions. As shown, the conversion values for transition 

from greenhouses to socio-cultural uses are all positive, facilitating such transitions across all 

solutions. However, only solutions 23, 36 and 50 had positive conversion values for transition 

from socio-cultural uses to greenhouses. A more likely explanation of the resultant behaviour 

is provided by the neighbourhood rule tails, indicated by the influence values at a distance of 

one across the five solutions. Solutions that preference ΔCLU have a repulsive influence (i.e. 

a negative influence value) between both land-use classes, whilst solutions that preference FKS 

have an attractive influence between both land-use classes, producing a mutual attraction that 

explains the observed simulated output maps. 
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Table 2.2. Variation of conversion and influence at distance 1 of Pareto front solutions for 

conversion from greenhouses to socio-cultural uses and from socio-cultural uses to 

greenhouses 

Rule Solution Conversion value Influence at 

distance 1 

From greenhouses 

to socio-cultural 

uses 

1 80.07 -6.37 

9 58.04 -35.44 

23 93.88 201.37 

36 73.90 207.73 

50 91.03 210.88 

From socio-cultural 

uses to 

greenhouses 

1 -34.88 -366.20 

9 -28.37 -537.10 

23 36.40 114.23 

36 55.99 146.00 

50 81.46 168.97 

 

To illustrate this further, the a parameters for the conversion from greenhouses to socio-

cultural uses, which control the type (attractive or repulsive) and partially the strength of the 

influence that the presence of the class greenhouses has in the neighbourhood of cells 

transitioning to socio-cultural uses, is shown in Figure 2.11 for all Pareto front solutions, 

ordered by increasing FKS value. As shown, there is a clear point, at approximately solution 

20, where the a parameter changes from a negative to a positive value, changing the 

relationship from repulsive to attractive. Given the trend shown in Figure 2.11, this appears to 

be a driver in generating solutions that preference FKS agreement. Similar behaviour was also 

found for the a parameter controlling the influence the class socio-cultural uses has in the 

neighbourhood of cells transitioning to greenhouses. 
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Figure 2.11. Variation of the a parameter value across the Pareto front solutions, ordered 

by increasing FKS, for the influence of greenhouses in the neighbourhood of socio-cultural 

uses 

 

Figures 2.12 and 2.13 show the distance-decay parameter values for motorways and other 

roads, respectively, ordered and coloured by the selected solution. As shown, the optimisation 

process resulted in several trends across the Pareto front solutions. Some parameters were tuned 

to relatively constant values across the solutions, such as industry and services for motorways, 

and recreation areas and socio-cultural uses for other roads. Parameters for other classes were 

tuned to either relatively high or relatively low values, depending on the relative trade-off 

between the two objectives. For example, the distance decay for greenhouses and residential 

increased from a relatively low value for solutions favouring ΔCLU to a relatively high value 

for solutions that favour FKS for both motorways and other roads, which is reflected in the 

simulation maps with the increasingly growing clusters of inter-connected patches of these 

land-uses between the two concentrated urban areas. In Figure 2.7b-2, for solutions with a 

preference for ΔCLU, there are two distinct clusters of urban land-uses, most notably 

residential, that are sparsely connected, whereas in Figure 2.7f-2, for solutions with a 

preference for FKS, the two patches of residential area are essentially connected by the land-

use classes residential and greenhouses, in an area where both motorways and other roads are 

present. 
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Figure 2.12. Accessibility distance-decay parameter values across Pareto front solutions for 

motorways 

Figure 2.13. Accessibility distance-decay parameter values across Pareto front solutions for 

other roads 
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2.4.4 Final parameter set 

Following the evaluation of the identified Pareto optimal solutions, considering the simulated 

output maps, parameters, and the influence of the objectives, the final parameter set 

recommended corresponds to Pareto front solution 1, which generated the solution map shown 

in Figure 2.7b (see Supplementary material 2C for parameters). This Pareto front solution 

outperformed the largest number of benchmark tests, and generated plausible solution maps. 

The parameters obtained more often aligned with general understanding of land-use change 

processes, although more neighbourhood rules were included than would be for a conventional 

manual calibration, though this was true for all solutions generated. Solutions that correspond 

to higher values of FKS agreement, as discussed, were not recommended because, based on 

the output maps and parameters, they did not result in realistic performance.  

2.5 Discussion 

This section considers the results obtained from the optimisation process, with additional 

interpretation considering how the structure of the framework influences the results obtained. 

2.5.1 Enhanced understanding of applied metrics 

As the metrics drive the optimisation process, it is important to understand what impact 

different metrics have on the parameters and land-use maps obtained. With regard to the 

clumpiness metric, this was aggregated from class level into a single objective for optimisation 

purposes, which was achieved by taking the average. Consequently, it is important to 

understand the impact this averaging has on the results obtained. This was achieved by 

analysing the error for each class for the five solutions considered, as shown in Figure 2.14, 

with the colours corresponding to the different classes, and the average shown by the black bar 

on the left-hand side (for each solution). As shown in the figure, solutions 1 and 9 have 

relatively equal error across each class, which is captured well by the average. However, 

moving to solutions 23, 36 and 50, it is observed that there is a large variation in the errors 

across the classes, especially in solutions 23 and 36, where one class (services and nature, 

respectively) has a much higher error relative to the other classes.  

These results suggest potential improvements could be achieved by using a different 

aggregation strategy for converting the class level clumpiness errors into a single value, for 

example, by taking the maximum, as this could potentially penalise the outputs more 

appropriately to generate patterns more consistent with the observed data. As the approach uses 

multi-objective optimisation, the individual class-level errors could also be considered as 
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independent objectives, which for this case-study would require eight objectives, including 

locational agreement and the seven clumpiness error values, generating an 8-dimensional 

objective space. 

Figure 2.14. Class level absolute clumpiness error variation across the Pareto front for five 

selected solutions 

 

With regard to the FKS measure, its use as a measure of locational agreement may have resulted 

in an over-emphasis on the agreement of transitions between the simulated output and the data 

(i.e. the corresponding actual land-use map), which is potentially not appropriately balanced 

with the agreement of inertia. This was confirmed by assessing the solutions with the Kappa 

and Fuzzy Kappa statistic (see Table 2.3). As shown in this table, the values with lower FKS 

correspond to higher Kappa and Fuzzy Kappa values. As previously mentioned, all solutions 

outperform the FKS benchmark (by being greater than 0), but only solution 1 outperforms the 

benchmark Kappa value, and no solutions outperform the benchmark Fuzzy Kappa value, 

generated by a growing clusters neutral model. Solutions 1 and 9 outperform the benchmark 

Kappa value generated by using a random constraint match neutral model, and all solutions 

outperform the benchmark Fuzzy Kappa values generated by using a random constraint match 

neutral model. 
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Table 2.3. A comparison of FKS, Kappa, and Fuzzy Kappa values across five selected Pareto 

front solutions 

Solution no. FKS Kappa Fuzzy Kappa 

1 0.173 0.789 0.854 

9 0.181 0.784 0.852 

23 0.190 0.765 0.835 

36 0.201 0.761 0.832 

50 0.209 0.758 0.829 

GC Neutral model - 0.789 0.869 

RCM Neutral model - 0.773 0.828 

 

Unlike for the landscape pattern structure metric, where improvement could be achieved with 

alteration of the aggregation method, the issues presented with the use of the FKS statistic are 

inherent to the metric, and cannot be adjusted without modifying the underlying calculation of 

the metric. The Fuzzy Kappa or Kappa statistic could potentially be used as an alternative, but 

this would likely introduce the opposite problem of the optimisation being too heavily weighted 

towards inertia within the measure of locational agreement. One solution may be to use both 

metrics as part of multi-objective optimisation, which would give more weight to the inertia (a 

land-use transition to the same land-use class) used in the calculation of FKS. Further 

investigation of the metrics used is a clear avenue for further research to improve the outputs 

of automated parameter tuning methods based on multi-objective optimisation. 

2.5.2 Balancing automatic and heuristic analysis in calibration 

The application of the multi-objective optimisation framework highlights the need to balance 

automatic and heuristic analysis. Too often, metrics quantifying different aspects of the fit 

between simulated output and data are used exclusively to evaluate the quality of a LUCA 

model calibration method. As covered in the results (Sections 2.4.2 and 2.4.3), evaluation can 

be improved with the incorporation of heuristic analysis, incorporating domain knowledge to 

evaluate the output solution maps and parameters.  

The heuristic analysis also provides insights into the potential improvement of the calibration 

framework with the incorporation of additional process knowledge. Though many objectively 

valid solutions are produced, certain parameters are not necessarily consistent with those 

expected from process understanding. The incorporation of additional process knowledge 

regarding certain parameters presents a clear avenue to improving the optimisation procedure, 

by reducing the search-space and computational effort required, resulting in faster solution 

convergence, and parameters that are more consistent with expectations. 
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In turn, using an automatic approach also provides insights into the model structure and its 

behaviour. Certain model parameter values, though inconsistent with heuristic expectation, still 

generated results that were acceptable according to the metrics used. This provided insight into 

what aspects of the parameterisation and model results should be captured by the objectives 

(Section 2.5.1) and also showed the importance of providing plausible boundaries for model 

parameters. Further work on the automatic calibration, including a thorough analysis of the 

solutions obtained, presents a path for future research to improve the understanding of LUCA 

model calibration, the model itself and the interplay of factors driving land use change. 

2.6 Conclusions and recommendations 

Accurate and effective calibration of LUCA models is essential to allow for application to the 

study region of interest. This paper presents an automatic calibration framework specifically 

designed for such LUCA models. The framework is generic, allowing for substitution of the 

various components (e.g. the LUCA model, metrics, and the optimisation algorithm), utilises 

multi-objective optimisation to allow for the exploration of trade-offs between the selected 

objectives, appropriately considers the inherent stochasticity included in LUCA models, and 

facilitates increased computational efficiency through its implementation. 

The capability of the generic framework has been illustrated with an application to the 

Randstad region of the Netherlands. The case study was implemented with parallel computing, 

to reduce the parameter adjustment computing time from the order of hundreds of days to the 

order of days. The approach generated 77 possible model parameter sets that resulted in Pareto 

optimal solutions based on the selected objective metrics, of which 50 were considered 

plausible. Following evaluation of both the simulated output and parameters against process 

knowledge, a final parameter set was recommended. 

The framework provided crucial insights into the influence the metrics had on driving the 

optimisation process, and how more realistic performance could potentially be achieved with 

the alteration to the optimisation objectives. The results are also driven by the genetic algorithm 

parameters used. As with other applications of genetic algorithms to the automatic parameter 

adjustment stage of calibration of LUCA models (e.g. Jafarnezhad et al., 2016) it would be 

meaningful to investigate the influence these parameters had on the output obtained, though 

this would depend on computational resource availability. 

The framework highlights the importance of heuristic interpretation when evaluating the result 

map and obtained parameters, and the potential of such methods to enhance LUCA model 



51 

 

understanding. The demonstrated application of the framework and its generic nature show 

promising potential for future applications of LUCA models to support long term planning and 

policy development. 
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2.8 Supplementary material 

2.8.1 Supplementary material 2A: Confusion matrices 

This section contains confusion matrices for the data and the six solution maps presented in 

Section 2.4.2, showing a count of land-use class presence per cell between 1989 and 2000. 

These tables highlight the volume and type of land-use transitions across the different Pareto 

front solutions. 

Table 2.A1. Confusion matrix for data between 1989 and 2000 

 Map 2 

Map 

1 

LUC AGR GRE RES IND SER SCU NAT REC AIR WAT Total 

AGR 26128 152 559 453 12 17 641 336 12 188 28498 

GRE 81 349 25 9 1 2 1 1 0 5 474 

RES 160 3 3511 35 18 37 34 123 0 22 3943 

IND 67 1 45 1205 7 10 43 28 7 65 1478 

SER 3 0 32 37 68 12 6 9 0 4 171 

SCU 13 0 55 17 2 212 39 20 0 3 361 

NAT 92 1 19 26 0 3 5814 129 0 50 6134 

REC 105 6 81 28 2 21 141 1229 0 44 1657 

AIR 34 0 0 0 0 0 3 0 31 0 68 

WAT 110 2 23 85 0 3 56 37 0 1685 2001 

Total 26793 514 4350 1895 110 317 6778 1912 50 2066 44785 

 

Table 2.A2. Confusion matrix for Pareto optimal solution with FKS=0.173 and ΔCLU = 0.002 

between 1989 and 2000 

 Map 2 

Map 

1 

LUC  AGR GRE RES IND SER SCU NAT REC AIR WAT Total 

AGR 26529 41 426 447 0 0 787 268 0 0 28498 

GRE 0 473 0 0 0 0 0 1 0 0 474 

RES 0 0 3921 0 0 0 0 22 0 0 3943 

IND 30 0 1 1426 0 0 1 20 0 0 1478 

SER 11 0 1 1 110 0 2 46 0 0 171 

SCU 25 0 1 5 0 317 0 13 0 0 361 

NAT 64 0 0 15 0 0 5962 93 0 0 6134 

REC 181 0 0 1 0 0 26 1449 0 0 1657 

AIR 0 0 0 0 0 0 0 0 68 0 68 

WAT 0 0 0 0 0 0 0 0 0 2001 2001 

Total 26840 514 4350 1895 110 317 6778 1912 68 2001 44785 
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Table 2.A3. Confusion matrix for Pareto optimal solution with FKS=0.181 and ΔCLU = 0.003 

between 1989 and 2000 

 Map 2 

Map 

1 

LUC AGR GRE RES IND SER SCU NAT REC AIR WAT Total 

AGR 26499 108 475 398 0 0 807 211 0 0 28498 

GRE 14 406 4 27 0 0 6 17 0 0 474 

RES 0 0 3870 0 0 0 0 73 0 0 3943 

IND 0 0 0 1448 0 0 1 29 0 0 1478 

SER 15 0 1 4 110 0 2 39 0 0 171 

SCU 26 0 0 3 0 317 2 13 0 0 361 

NAT 117 0 0 15 0 0 5913 89 0 0 6134 

REC 169 0 0 0 0 0 47 1441 0 0 1657 

AIR 0 0 0 0 0 0 0 0 68 0 68 

WAT 0 0 0 0 0 0 0 0 0 2001 2001 

Total 26840 514 4350 1895 110 317 6778 1912 68 2001 44785 

 

Table 2.A4. Confusion matrix for Pareto optimal solution with FKS=0.190 and ΔCLU = 0.006 

between 1989 and 2000 

 Map 2 

Map 

1 

LUC AGR GRE RES IND SER SCU NAT REC AIR WAT Total 

AGR 26182 150 770 381 1 13 666 335 0 0 28498 

GRE 26 363 17 3 0 50 1 14 0 0 474 

RES 252 1 3477 6 4 3 5 195 0 0 3943 

IND 0 0 1 1466 1 0 0 10 0 0 1478 

SER 25 0 21 8 101 0 3 13 0 0 171 

SCU 56 0 36 5 0 250 1 13 0 0 361 

NAT 21 0 19 13 1 0 6025 55 0 0 6134 

REC 278 0 9 13 2 1 77 1277 0 0 1657 

AIR 0 0 0 0 0 0 0 0 68 0 68 

WAT 0 0 0 0 0 0 0 0 0 2001 2001 

Total 26840 514 4350 1895 110 317 6778 1912 68 2001 44785 

 

Table 2.A5. Confusion matrix for Pareto optimal solution with FKS=0.201 and ΔCLU = 0.009 

between 1989 and 2000 

 Map 2 

Map 

1 

LUC AGR GRE RES IND SER SCU NAT REC AIR WAT Total 

AGR 26145 183 946 358 0 24 634 208 0 0 28498 

GRE 40 323 25 6 0 73 0 7 0 0 474 

RES 275 5 3257 6 0 5 10 385 0 0 3943 

IND 0 0 3 1466 0 1 0 8 0 0 1478 

SER 9 1 24 10 110 0 2 15 0 0 171 

SCU 61 0 68 6 0 212 3 11 0 0 361 

NAT 0 0 4 1 0 0 6077 52 0 0 6134 

REC 310 2 23 42 0 2 52 1226 0 0 1657 

AIR 0 0 0 0 0 0 0 0 68 0 68 

WAT 0 0 0 0 0 0 0 0 0 2001 2001 

Total 26840 514 4350 1895 110 317 6778 1912 68 2001 44785 
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Table 2.A6. Confusion matrix for Pareto optimal solution with FKS=0.210 and ΔCLU = 0.019 

between 1989 and 2000 

 Map 2 

Map 

1 

LUC AGR GRE RES IND SER SCU NAT REC AIR WAT Total 

AGR 26031 203 938 365 0 22 650 289 0 0 28498 

GRE 69 289 31 7 0 64 2 12 0 0 474 

RES 357 13 3250 12 0 4 6 301 0 0 3943 

IND 0 0 6 1453 0 1 0 18 0 0 1478 

SER 11 4 22 6 110 0 2 16 0 0 171 

SCU 59 1 46 12 0 224 3 16 0 0 361 

NAT 0 0 14 0 0 0 6044 76 0 0 6134 

REC 313 4 43 40 0 2 71 1184 0 0 1657 

AIR 0 0 0 0 0 0 0 0 68 0 68 

WAT 0 0 0 0 0 0 0 0 0 2001 2001 

Total 26840 514 4350 1895 110 317 6778 1912 68 2001 44785 
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2.8.2 Supplementary material 2B: Neighbourhood tail influence figures 

This section contains a set of figures corresponding to the different neighbourhood rules 

describing the influence different land-use classes exert on the class residential for the solutions 

analysed in detail. 

Figure 2.B1. Neighbourhood rule tail for conversion from agriculture to residential 
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Figure 2.B2. Neighbourhood rule tail for conversions from greenhouses to residential 

Figure 2.B3. Neighbourhood rule tail for conversions from industrial to residential 
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Figure 2.B4. Neighbourhood rule tail for conversions from nature to residential 

Figure 2.B5. Neighbourhood rule tail for conversions from recreation areas to residential 
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Figure 2.B6. Neighbourhood rule tail for conversions from residential to residential 

Figure 2.B7. Neighbourhood rule tail for conversions from socio-cultural uses to residential 
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Figure 2.B8. Neighbourhood rule tail for conversions from services to residential 
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2.8.3 Supplementary material 2C: Final model parameterisation 

Table 2.C1. Inertia/Conversion parameters 

From/To GRE RES IND SER SCU NAT REC 

AGR 94.62 81.10 35.30 48.96 -26.93 20.45 15.88 

GRE 2608.65 -40.30 80.86 -35.52 58.04 -38.79 81.79 

RES 58.02 4142.51 -29.37 69.19 45.49 79.16 71.61 

IND 2.56 45.18 2504.04 -37.57 31.13 -36.41 -46.91 

SER 25.18 -31.74 -43.44 4508.40 71.34 4.68 48.02 

SCU -28.37 29.59 -4.36 -7.58 4124.71 33.40 37.45 

NAT 72.61 81.08 37.25 70.26 -38.65 2360.85 100.00 

REC 69.41 -32.05 49.51 -46.85 -3.60 89.57 2957.07 

AIR 53.73 88.52 17.15 57.37 -18.60 53.27 69.24 

WAT -49.51 31.98 70.93 44.79 88.21 62.55 -31.23 

 

Table 2.C2. Neighbourhood rule a parameters 

From/To GRE RES IND SER SCU NAT REC 

AGR -179.73 -704.44 -720.20 -374.93 86.68 -657.23 -680.28 

GRE 707.69 247.79 -466.96 233.29 -990.06 -237.31 -811.14 

RES -996.46 369.06 105.07 110.30 -485.26 -815.79 817.88 

IND 127.06 184.53 137.92 234.48 768.52 487.25 -56.00 

SER -678.64 897.13 47.45 -845.38 -447.53 69.96 117.35 

SCU -565.31 394.57 985.62 -83.81 171.47 -336.22 778.66 

NAT 195.83 -875.47 -246.59 -844.79 683.76 171.47 -988.66 

REC -283.93 85.62 -663.00 -302.89 -691.96 602.16 613.24 

AIR -12.20 -942.51 851.11 -461.78 134.85 -984.62 -50.08 

WAT -63.18 -636.50 -433.31 -266.81 -898.21 776.96 119.15 

 

Table 2.C3. Neighbourhood rule b parameters 

From/To GRE RES IND SER SCU NAT REC 

AGR 4.32 3.58 1.37 0.66 4.06 4.91 0.96 

GRE 3.21 4.47 4.62 2.02 3.33 2.32 3.58 

RES 3.58 1.87 4.81 4.73 4.91 3.23 1.21 

IND 3.29 2.53 0.73 3.93 4.13 1.99 4.48 

SER 1.54 2.32 4.10 3.30 4.03 2.41 0.19 

SCU 0.05 3.32 4.73 2.82 3.16 3.31 3.87 

NAT 2.89 1.96 1.16 3.90 4.70 3.16 2.43 

REC 4.45 3.12 1.84 1.40 4.02 1.88 2.12 

AIR 3.74 1.76 2.55 4.49 3.34 2.10 1.91 

WAT 4.85 3.76 3.74 3.79 1.48 3.04 4.24 
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Table 2.C4. Accessibility parameters 

Land-use class Motorway 

Distance Decay 

Motorway 

weight 

Other roads 

Distance Decay 

Other roads 

weight 

GRE 14.33 0.48 0.01 0.46 

RES 3.56 0.93 12.39 0.66 

IND 7.00 0.38 13.42 0.59 

SER 1.27 0.48 4.34 0.21 

SCU 7.75 0.26 10.56 0.37 

NAT 1.73 0.71 12.14 0.99 

REC 8.40 0.19 3.20 0.13 
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3 Empirically derived method and software for semi-automatic 

calibration of Cellular Automata land-use models 
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Empirically derived method and software for semi-automatic calibration of 

Cellular Automata land-use models 

Abstract 

Land-use change models generally include neighbourhood rules to capture the spatial dynamics 

between different land-uses that drive land-use changes, introducing many parameters that 

require calibration. We present a process-specific semi-automatic method for calibrating 

neighbourhood rules that utilises discursive knowledge and empirical analysis to reduce the 

complexity of the calibration problem, and efficiently calibrates the remaining interactions with 

consideration of locational agreement and landscape pattern structure objectives. The approach 

and software for implementing it were tested on four case studies of major European cities with 

different physical characteristics and rates of urban growth. The implementation of the 

proposed approach explored the impact of a preference for different objectives, and 

outperformed benchmark models for both calibration and validation when a balanced objective 

preference was used. This research demonstrates the utility of process-specific calibration 

methods, and highlights how discursive knowledge can be integrated with automatic 

calibration to make the process more efficient. 
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3.1 Introduction 

Land-use change models are used to understand the wide-ranging impacts of land-use changes, 

including the impact on the rate of greenhouse gas emissions (Li et al., 2017, Pogson et al., 

2016), the balance of agricultural production with ecosystem preservation (Connor et al., 2015, 

Van Delden et al., 2010), and the influence of land-use policy on urban growth (Berberoğlu et 

al., 2016, Chaudhuri and Clarke, 2013a). Land-use changes are caused by many different, 

mutually influential bio-physical and socio-economic drivers (Lambin et al., 2001, Wang et al., 

2011a) which must be captured effectively by land-use change models to generate realistic 

output. To model land-use changes effectively Cellular Automata (CA) were proposed to 

replicate land-use as a dynamic spatial system (Tobler, 1979). This required relaxing the 

conventional implementation of CA (Couclelis, 1985) to replicate fractal patterns of land-use 

changes consistent with urban evolution (White and Engelen, 1993a). Doing so led to the 

development of multiple Land Use Cellular Automata (LUCA) models, which have 

proliferated due to their simplicity, flexibility and intuitiveness (Santé et al., 2010). 

An important aspect of modelling land-use changes is the consideration of spatial and temporal 

dynamics between different land-uses (Van Vliet et al., 2013b). Applications of CA to land-

use modelling consider the composition of the neighbourhood. A strict CA only considers the 

neighbourhood composition of the geometrically closest set of cells for the consideration of 

spatial dynamics, implemented in numerous LUCA models (Li et al., 2013, Wu, 2002), 

including the popular generic modelling framework SLEUTH (Clarke et al., 1997, Silva and 

Clarke, 2002). However, other LUCA models, most notably those derived from White and 

Engelen (1993c) that use a transition potential as the mechanism for the allocation of land-use 

changes, use an extended neighbourhood (i.e. the set of cells within a certain cellular radius) 

for a more detailed consideration of spatial dynamics, which requires the use of neighbourhood 

rules that characterise the influence different land-use classes exert on each other relative to 

proximity. 

While the use of neighbourhood rules allows for a more detailed replication of the spatial 

dynamics that exist between different land-use classes, it also increases the number of model 

parameters significantly, often by hundreds (Blecic et al., 2015, García et al., 2013). LUCA 

model application requires appropriate values of these parameters to be determined by means 

of calibration, which involves the initial setting of parameter values, the iterative adjustment 

of these values based on comparison of the model output with observations, and the selection 

of a final parameter set, for application to a specific case study for long term scenario analysis 
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(Newland et al., 2018a). The difficulty of the calibration processes is generally a function of 

the dimensionality of the parameter space, which is a function of the number and possible 

ranges parameters can take during the iterative adjustment process. Neighbourhood rules are 

the primary contributor to this high parameter dimensionality, and hence are often the main 

calibration parameters of these types of LUCA models (Engelen and White, 2008). 

The conventional method of calibration is to manually adjust the neighbourhood rule 

parameters (García et al., 2013, Van Delden et al., 2012), which is a knowledge and time 

intensive process. Given the complexity of the calibration problem, the parameter 

dimensionality is often implicitly reduced when using such an approach based on the 

modeller’s knowledge of the spatial dynamics driving land-use changes in a region (White et 

al., 1997), and the common forms of neighbourhood rules (Hagoort et al., 2008). Additionally, 

metrics can be used to objectively evaluate calibration performance. For LUCA models, there 

are two distinct types of metrics that measure different aspects of calibration performance 

(Newland et al., 2018a): locational agreement metrics, the match of pixels between simulated 

output and data, and landscape pattern structure metrics, the difference between simulated and 

observed patterns of land-use that infer the realism of land-use change processes. Objective 

measures of LUCA model performance have facilitated the development of automatic 

calibration methods, where parameters are iteratively adjusted automatically to improve LUCA 

model performance as quantified by the metrics used. 

There are two general approaches to automatically calibrate neighbourhood rules. The first 

approach uses a population-based optimisation algorithm (Blecic et al., 2015, García et al., 

2013, Newland et al., 2018a), where a population of solutions is generated (i.e. a number of 

different sets of neighbourhood rules), and adjusted based on some operators to improve the 

objective performance of the solutions over a number of iterations. Optimisation approaches 

are effective at generating multiple possible model parameterisations, but are computationally 

intensive, often requiring parallel computing resources for practical implementation (Blecic et 

al., 2015, Newland et al., 2018a). Such approaches also lack transparency, which can result in 

parameters that conflict with process understanding, despite producing a model with 

objectively good performance. The alternative to automatic calibration is the use of efficiency 

focussed methods targeted to the spatial dynamic processes in the transition potential model, 

aiming to generate a single set of calibrated neighbourhood rules that is consistent with 

discursive knowledge for a limited computational budget (Straatman et al., 2004, Maas et al., 

2005, Van Vliet et al., 2013b), achievable using a desktop PC as opposed to a supercomputer. 
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Given the limited availability of supercomputing resources, such approaches, designated as 

process-specific, are valuable as a practical means of automatic calibration. 

Despite a specific focus on neighbourhood rules, previous process-specific methods have not 

fully utilised discursive knowledge to generate neighbourhood rules consistent with such 

knowledge (Van Vliet et al., 2013b), and do not necessarily focus on the most important spatial 

interactions during calibration (Straatman et al., 2004). Previous methods have also only used 

a single metric of performance, not considering the implementation of multiple metrics to 

capture the two aspects of calibration performance previously discussed, and how these 

competing objectives impact on the resulting model performance. 

Given the shortcomings of current process-specific calibration methods outlined above, while 

maintaining their relative computational efficiency and transparency compared with 

population-based optimisation algorithms, this research proposes a semi-automatic, process-

specific calibration method. The aims of this paper are (i) to develop a calibration method that 

utilises process knowledge about meaningful interactions to facilitate efficient automatic 

calibration that allows for the consideration of both aspects of LUCA model performance for 

a limited computational budget, (ii) to investigate the utility of the proposed approach through 

application to several case studies, and (iii) to obtain insight into the choice of objectives and 

preference for them on the resultant calibrated model. 

The remainder of this paper is organised as follows: To illustrate the complexity of the 

calibration problem, background information about neighbourhood rules is presented in 

Section 3.2. Section 3.3 presents the proposed approach for calibration, and Section 3.4 

presents the implementation and computational testing regime used to evaluate it. The results 

are presented and discussed in Section 3.5, and the conclusions of this work are presented in 

Section 3.6. 

3.2 Complexity of the calibration problem 

This section provides explicit details of the complexity of the calibration of neighbourhood 

rules, by defining the dimensionality of the neighbourhood rule parameter space for transition 

potential LUCA models. To do this, consider the transition potential land-use allocation 

mechanism, illustrated in Figure 3.1, which is described in detail below. 
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Figure. 3.1. Example of a transition potential allocation mechanism for a CA land-use 

model. Starting from an initial land-use map, the model allocates a transition potential to 

each cell (the gridded map) for each type of land-use based on a set of parametric maps, 

neighbourhood rules, and a stochastic component. The model then allocates a land-use class 

to each cell based on the potential and demand for each year (t). This process is repeated 

until the final year of the simulation (t=T), when the output map for that year is produced. 

 

A transition potential based LUCA model can be defined as a dynamic process providing a 

sequence of land-use maps, X1, X2, …, XT, given an initial land-use map XO. Each land-use 

map is defined specifically as the set of land-use classes for each cell: 

 𝑿𝑡 = {𝑥𝑐,𝑡 ∈ 𝐴: 𝑐 ∈ 𝐶} (3.1) 

where xc,t is the land-use class of cell c at time t, A is the set of all land-use classes, and C is the 

set of all cells. For most applications, the set A can be partitioned as: 

 𝐴 =  𝐴𝐴 ∪ 𝐴𝑃 ∪ 𝐴𝑆 (3.2) 

where AA is the set of active land-use classes (i.e. the classes that are actively allocated by the 

model, generally urban classes such as residential and commercial land-use), AP is the set of 

passive classes (i.e. classes that have low transition costs such as natural areas, and are allocated 

after the actively modelled classes) and AS is the set of static classes (i.e. classes that occupy a 
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fixed location throughout the simulation, such as water bodies or airports). The set C can be 

partitioned following the same convention: 

 𝐶 = 𝐶𝐴,𝑡 ∪ 𝐶𝑃,𝑡 ∪ 𝐶𝑆 (3.3) 

where CA,t is the set of cells containing active land-use classes at time t, CP,t is the set of cells 

containing passive land-use classes at time t, and CS is the set of cells containing static classes, 

which do not vary with time. 

The evolution dynamics of the land-use is given by the functional relationship: 

 𝑿𝑡+1 = 𝑓(𝜣𝑡, 𝑵(𝑿𝑡), 𝒗𝑡, 𝜹) (3.4) 

where Θt are parametric maps governing the effect of processes such as soil quality and zoning 

that influence land-use changes (which are independent of the land-use map), N(Xt) is the set 

of neighbourhood influence values that is dependent on the current state of the land-use map, 

vt is a stochastic perturbation term, included to capture the system uncertainty, and δ is the 

land-use demand (assuming the LUCA model is constrained) for each active land-use class. 

Each of Θt, N(Xt), and vt are given for each cell in the land-use map, for each actively and 

passively modelled land-use class. For each time step t (i.e. each year) the functional 

relationship in Equation 3.4 describes how land-use is allocated to every cell in the map based 

on the transition potential, which is the potential for each specific cell to support each type of 

active or passive land-use class. For each active class, the cells with the highest transition 

potential are selected, until the demand is met, after which passive land-uses are allocated to 

the remaining cells (as these have no specified demand). A general form for determining 

transition potential is: 

 𝑇𝑃𝑐,𝑖,𝑡 = 𝛩𝑐,𝑖,𝑡 ∙  𝑁𝑐,𝑖,𝑡 ∙ 𝑣𝑡 (3.5) 

where TPc,i,t is the potential for cell c to support land-use i at time t, Nc,i,t is the neighbourhood 

potential for cell c to support land-use i at time t, and is a function of the composition of the 

cellular neighbourhood of c, with each cell in the neighbourhood exerting some influence based 

on its class and distance from c. This has the general form: 

 𝑁𝑐,𝑖,𝑡 = ∑ 𝑤𝑖,𝑥
𝑐′,𝑡

,𝑑(𝑐,𝑐′)

𝑐′∈ 𝐷(𝑐)

 (3.6) 

where D(c) is the set of cells in the neighbourhood of cell c, d(c,c’) is the linear distance 

between the cells c and c’, and wi,j,d is a neighbourhood weighting parameter that expresses the 

influence that a cell of land-use type j exerts on the potential for land-use class i at a linear 
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distance d between the two cells (note that in Equation 3.6, the subscripts of the general form 

of the weight term wi,j,d are given by j equalling xc’,t, and d equalling d(c,c’)). Neighbourhood 

rules define the weight values, capturing distinct aspects of spatial dynamics based on the type 

of relationship being described and the distances being considered (Van Vliet et al., 2013b). 

This is illustrated in Figure 3.2, showing how weights are defined at different distances for 

different spatial dynamics. It is important to note that the weight values have no physical 

meaning, but derive meaning relative to each other. 

In total, the set of neighbourhood interactions of class j on class i at distance d (symbolised by 

(i,j)d) are defined by the set: 

 𝑃 = {(𝑖, 𝑗)𝑑: 𝑖 ∈ 𝐴𝐴, 𝑗 ∈  𝐴, 𝑑 ∈ [0] ∪ [1, 𝑑𝑀𝐴𝑋]} (3.7) 

where P is the set of all interactions, AA is the set of actively allocated land-use classes, A is the 

set of all land-use classes, and dMAX is the maximum distance that defines the size of the 

neighbourhood. Interactions can be categorised as either self-influencing, when i and j are 

equal, (e.g. describing the influence of a residential class to attract more residential 

development), or across class interactions, when i and j are unequal (e.g. describing the 

influence of a residential class to attract industrial development). All interactions can also be 

described as either a point influence at distance zero, describing the influence of a cell on itself; 

or a neighbourhood tail influence for distances of one or greater, describing the remote 

influence of a class on a cell. Given these categorisations, there are four distinct types of spatial 

dynamics, examples of which are given in Figure 3.2, which are captured by neighbourhood 

interaction types (Van Vliet et al., 2013b), outlined below: 

1. Inertia points, [(i,i)0 ∈ P, i ∈ AA]: These describe the persistence of a specific land-use 

class i to remain in its present location; 

2. Conversion points, [(i,j)0 ∈ P, i ∈ AA, j ∈ A, j ≠ i]: These describe the potential for a 

transition from one land-use class j to a different land-use class i at its present location; 

3. Self-influence tails, [(i,i)d ∈ P, i ∈ AA, d ≥ 1]: These describe the influence a land-use 

class i exerts on the same type of land-use i that is in the neighbourhood of a cell; and 

4. Cross-influence tails, [(i,j)d ∈ P, i ∈ AA, j ∈ A, j ≠ i, d ≥ 1]: These describe the influence 

a land-use class j exerts on a different type of land-use i that is in the neighbourhood of 

a cell. 
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Figure 3.2. An example of how different neighbourhood rules and types of interactions are 

used to determine neighbourhood potential (in a single plane to the right of the cell marked 

with an x), an inertia point and self-influence tail, which influences the potential for the cell 

of interest to remain residential (red), and a conversion point and cross-influence tail, which 

influences the potential for the cell to transition to industrial (purple) 

 

The four distinct types of interaction mean the full set can be partitioned as: 

 𝑃 = 𝑃𝐼𝑃  ∪  𝑃𝐶𝑃  ∪  𝑃𝑆𝑇  ∪  𝑃𝐶𝑇 (3.8) 

where PIP is the set of inertia point interactions, PCP is the set of conversion point interactions, 

PST is the set of self-influence tail interactions, and PCT is the set of cross-influence tail 

interactions. The total number of interactions considered is generally given by: 

 𝑃 = |𝐴𝐴|  ∙  |𝐴| (3.9) 

Each tail interaction can be described by the weight at distance 1 multiplied by a function that 

describes the decaying neighbourhood tail interaction, that is: 

 𝑤𝑖,𝑗,𝑑 = 𝑤𝑖,𝑗,1  ∙ 𝑢(𝑑) 𝑓𝑜𝑟 𝑑 ≥ 1 (3.10) 

where u(d) is the functional form of the neighbourhood rule tail shape. The tail shape u(d) is a 

pre-specified function (e.g. linear, exponential) starting at u(1), and decaying as d increases, 

resulting in a diminishing effect of a land-use class on another with increasing distance. 

As each neighbourhood influence can feature four parameters, as shown in Figure 3.2 (e.g. a 

point weight at distance 0, and a piecewise linear relationship of tail weights for distance 1, a 

point of inflection, and a point where influence is set to zero), and as LUCA models can 

typically have 20 land-use classes where 10 are actively modelled, there are minimally 800 

parameters that require calibration. Hence, the dimensionality of the neighbourhood rule 

parameter space is typically very high. It is for this reason that neighbourhood rules are the 

main focus of the calibration of LUCA models (Engelen and White, 2008), and why the 

calibration of neighbourhood rules is complex. The high dimensionality makes it difficult to 
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know which parameters to adjust to achieve an improved model calibration. This problem is 

further exacerbated by the limited calibration data available, as typically there exists only an 

initial data land-use map 𝑿̂0 and one or two other data land-use maps 𝑿̂𝑎 and 𝑿̂𝑏 for some a 

and b ≥ 1. The high parametric dimensionality also introduces potential issues with equifinality 

(Van Vliet et al., 2016), where the same calibration performance can be achieved by different 

sets of neighbourhood rules, despite the rules not necessarily being consistent with process 

knowledge. 

3.3 Proposed approach 

A conceptual outline of the proposed approach for the (semi) automatic calibration of 

neighbourhood rules is shown in Figure 3.3. The approach has been developed with two 

primary aims. The first is the reduction of the dimensionality of the neighbourhood rule 

parameter space, to mitigate the parametric dimensionality issues outlined previously, by 

identifying the key land-use interactions for consideration (symbolised by the set P’). This is 

based on automating and formalising the process of interaction elimination that is common in 

manual calibration methods. The proposed approach is conducted in an objective, transparent 

and repeatable manner, however, it also allows for the manual elimination of interactions. 

The second aim is the computationally efficient calibration of the remaining neighbourhood 

rule weighting parameters. An initial set of neighbourhood rule weighting parameters W’initial 

is generated during the parameter categorisation stage, and is subsequently refined in the coarse 

adjustment stage to generate W’coarse, a point determined with user input within the parameter 

space that results in objectively good performance that is consistent with process knowledge. 

Next, during the fine adjustment stage, the neighbourhood rule weighting parameters are 

individually tuned to generate a set of calibrated weighting parameters W’final. Advantages of 

the proposed methods are that calibration is performed efficiently with a minimal number of 

model simulations (i.e. a computational budget achievable using a desktop PC as opposed to a 

supercomputer), the two key aspects of LUCA model performance are considered (i.e. 

locational agreement and landscape pattern structure), and it allows for manual intervention to 

set neighbourhood weighting parameters at any point. The remainder of this section presents 

the details of each stage. 
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Figure 3.3. Conceptual outline of proposed methodology for semi-automatic process-

specific neighbourhood rule calibration 

 

3.3.1 Interaction elimination 

3.3.1.1 Overview 

The interaction elimination stage reduces the parameter dimensionality by eliminating certain 

interactions to simplify the subsequent calibration problem, reducing the total set P to the 

smaller set P’ of important interactions that are identified to be driving land-use changes in the 

region (Figure 3.3). The interaction elimination is based on an analysis of the available data, 

making the process objective and repeatable. 

The primary objective of this stage is to determine the set of interactions P’ composed of: 

 𝑃′ = 𝑃′𝐼𝑃  ∪  𝑃′𝐶𝑃  ∪  𝑃′𝑆𝑇  ∪  𝑃′𝐶𝑇 (3.11) 

where the subsets P’IP, P’CP, P’ST, and P’CT contain only the meaningful neighbourhood 

interactions. Typically, all inertia point and self-influence tail interactions are considered 
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meaningful, due to all land-uses exhibiting some tendency for persistence and some tendency 

for self-influence in the neighbourhood. This means that P’IP is equal to PIP and P’ST is equal 

to PST, and that the reductions in P’ are achieved in the reduction of conversion point and cross-

influence tail interactions P’CP and P’CT. 

The interaction elimination process is summarised in Figure 3.4, where an empirical analysis 

and significance test are used for identifying the meaningful interactions in P’CP and P’CT. This 

is based on an empirical evaluation of the transitions that occur in the calibration data 𝑿̂0 and 

𝑿̂𝑎, as these data provide the main behaviour the land-use model is attempting to capture (Van 

Vliet et al., 2013b). The empirical analysis and significance test are conducted to determine if 

there is a statistically significant representation of a given land-use class for transitions to each 

active land-use class. This analysis is undertaken either at the location of the transitioned cells, 

informing the inclusion of a conversion point, or in the neighbourhood of the transitioned cells, 

informing the inclusion of a cross-influence tail. 

Figure 3.4. Proposed interaction elimination, based on empirical evaluation and 

significance testing 

 

Hence, the meaningful interactions are such that: 

 
𝑃𝐶𝑃
′ = {(𝑖, 𝑗)0 ∈ 𝑃𝐶𝑃: 𝑇0((𝑖, 𝑗)0, 𝑿̂) > 𝑡0 and 𝑍0((𝑖, 𝑗)0, 𝑿̂) > 𝑧0}

𝑃𝐶𝑇
′ = {(𝑖, 𝑗)1 ∈ 𝑃𝐶𝑇: 𝑇1((𝑖, 𝑗)1, 𝑿̂) > 𝑡1 and 𝑍1((𝑖, 𝑗)1, 𝑿̂) > 𝑧1}

 (3.12) 

where 𝑇𝑑((𝑖, 𝑗)𝑑 , 𝑿̂) is the empirically derived measure for the representation of land-use class 

j in the neighbourhood of cells at distance d that transitioned to class i (see Figure 3.4), td is the 

associated empirical threshold value, 𝑍𝑑((𝑖, 𝑗)𝑑, 𝑿̂) is the measure of statistical significance for 

the representation of land-use class j in the neighbourhood of cells at distance d that transitioned 
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to class i, and zd is the associated significance level. Interactions that do not return a 

neighbourhood representation that is above a user-defined threshold for td and zd are eliminated 

from subsequent calibration. 

The proposed interaction elimination is designed to extract the meaningful interactions based 

on the available data, which is likely limited to a pair of data maps. The method is inherently 

limited by the available data and can only capture what the available data indicate (i.e. 

intermediate transitions cannot be considered if there are no data to show these), which must 

be considered during application, as this has the potential to impact calibration performance 

(Blecic et al., 2015). The user must take into account the expected number of changes over the 

period considered when setting the thresholds. The user also has the ability to intervene 

following the interaction elimination, to either include rules that are not identified as 

statistically significant, or to eliminate rules that are identified as significant but are 

inconsistent with process understanding. 

The empirical analysis measures and significance test used for the elimination are described in 

the next two sections. It should be noted that the elimination uses measures to capture the 

independent influence of individual classes on an active class, as this is consistent with the 

model structure (i.e. neighbourhood rules only capture individual influence of one land-use on 

another). So, for example, because the model uses a neighbourhood rule describing the 

influence of land-use class j on the allocation of class i, a measure relating the presence of land-

use class j in the neighbourhood of class i is used for evaluation. Higher order, combined spatial 

influences are not considered, as these are not sufficiently captured by the transition potential 

model, with such effects only accounted for by the summation of the individual influences 

mentioned (see Equation 3.6). 

3.3.1.2 Empirical analysis measures 

The evaluation of conversion points is based on a form of the confusion matrix (Congalton, 

1991), referred to as a contingency table (see Table 3.1 for an example), which is generated by 

logging the land-use class transitions for each cell for 𝑿̂0 to 𝑿̂𝑎 (see Figure 3.4). 
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Table 3.1. Example contingency table, populated by logging the land-use class in each cell 

between two maps 

  𝑿̂𝒂 

  A1 A2 ⋯ An 

𝑿̂𝟎 

A1 η1,1 η1,2 ⋯ η1,n 

A2 η2,1 η2,2 ⋯ η2,n 

⋮ ⋮ ⋮ ⋱ ⋮ 
An ηn,1 ηn,2 ⋯ ηn,n 

 

In Table 3.1, ηi,j is the total number of cells that are class i in 𝑿̂𝟎 and have transitioned to class 

j in 𝑿̂𝒂. The value ηi,i (the case where i is equal to j) shows the total number of cells that did 

not change land-use class between 𝑿̂𝟎 and 𝑿̂𝒂, which provides information about the level of 

inertia. Using the contingency table, the inertia rate, which quantifies the tendency of a land-

use class to persist, can be derived as: 

 𝐼𝑅𝑖 = 
𝜂𝑖,𝑖

∑ 𝜂𝑖,𝑚
𝑛
𝑚=1

 (3.13) 

Using the contingency table, the conversion rate, which quantifies the tendency of transitions 

to a land-use class as a function of all transitions to that class, can also be derived as follows: 

 𝐶𝑅𝑖,𝑗 = 
𝜂𝑖,𝑗

(∑ 𝜂𝑚,𝑗
𝑛
𝑚=1 ) − 𝜂𝑖,𝑖

 (3.14) 

For the proposed approach, the threshold function for the inclusion of a conversion point (T0) 

is the conversion rate, derived from the contingency table. 

The evaluation of cross-influence tails is performed using the enrichment factor of transitioning 

cells (Van Vliet et al., 2013b), which expresses the over- or under-representation of a particular 

land-use class in the neighbourhood of cells that transitioned to a certain class at a certain 

distance, relative to the representation of the neighbourhood class in the entire landscape 

(Figure 3.4): 

 

𝐸𝐹𝑖,𝑗,𝑑 = 𝑙𝑜𝑔10 (
𝑅̅𝑖,𝑗,𝑑
𝑛𝑗
𝑛

) (3.15) 

where EFi,j,d is the enrichment factor for the presence of land-use class j at distance d in the 

neighbourhood of cells that transitioned to class i, Ṝi,j,d is the average relative representation of 

land-use class j in the neighbourhood at distance d of cells that transitioned to land-use class i, 

nj is the total number of cells of land-use class j in the data map 𝑿̂0, and n is the total number 



79 

 

of cells in the data map 𝑿̂0. To assist with interpretation, the enrichment factor is log-scaled by 

a factor of 10, so that values greater than 0 indicate over-representation, and values less than 0 

indicate under-representation. The threshold function (T1) for the inclusion of a cross-influence 

tail is based on the log-scaled enrichment factor at a distance d equal to one. 

It should be noted that the information from the contingency table, specifically the conversion 

rate, is used for the analysis of conversion points as opposed to the enrichment factor values at 

distance zero because the contingency table is more effective at capturing the different 

conversions in the data. Although the two measures use the same information (the enrichment 

factor at distance zero can be derived from the information in the contingency table, see 

Supplementary material 3A), the enrichment factor can be less effective at capturing the 

conversions occurring. For example, many conversions may be occurring from a certain class 

to another, but the enrichment factor may not suggest over-representation because there is a 

large representation of the class in the landscape (large ni), erroneously indicating that a 

conversion point is not required. A common example of this are conversions from large, 

relatively passive land-use classes, such as natural vegetation, because they occupy a large area 

of the landscape, and facilitate many conversions to different classes, which are meaningful to 

include. 

3.3.1.3 Significance test 

The Mann-Whitney U-test (MWU-test) is applied to determine whether the representation of 

land-use class j in transitions to land-use class i is statistically significant (Figure 3.4). The 

MWU-test requires the compilation of ranked data sets (shown in Figure 3.5 for the 

neighbourhood at distance one), for (i) the percentage of cells of land-use class j in the 

neighbourhood at distance d to cells transitioning to class i, compared to (ii) the percentage of 

cells of land-use class j at distance d for all cells. The MWU-test is used to assess whether there 

is significant variation for data sets (i) and (ii). This is formally stated as testing whether a 

sample drawn from one distribution is equally likely to be greater or less than a sample drawn 

from the other (this is the null hypothesis, H0, where the alternative hypothesis, HA, is that the 

first aforementioned sampled is more likely to be either greater or less than the second). For 

the proposed approach, H0 is that the ranks of the respective relative composition tallies for 

data sets (i) and (ii) are statistically equivalent. This is shown in Figure 3.5 for case a, as the 

distributions appear fairly similar. Alternatively, HA is that the ranks of the respective relative 

composition tallies for the two data sets are systematically higher or lower. This is shown in 

Figure 3.5 for case b, as the distributions for the transition data set possess a significantly larger 
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percentage of higher cell counts (i.e. ~15% of transition cells have 8 cells of class j at distance 

d equal to 1, while only ~2% of all cells have this number at the same distance). 

Figure 3.5. An example tally of the frequency of cells of class j at distance d equal to 1 from 

a given land-use class transition (bottom row), as compared to the frequency of cells of class 

j at distance d equal to 1 from all cells (top row). For case a, the distributions appear similar, 

whereas for case b, the distributions are skewed to different extremes, suggesting differences 

that are statistically significant. 

 

The MWU-test requires the U-test statistic to be calculated, which requires the two distribution 

tallies to be combined and ranked from low to high (Corder and Foreman, 2014). With the 

ranked order determined, the U-test statistic is calculated for the ranks of the distribution of a 

specific land-use class j in the neighbourhood at a distance d of cells that transitioned to land-

use class i: 

 
𝑈𝑖,𝑗,𝑑 = 𝑛𝑖 ∙ 𝑛 + 

𝑛𝑖(𝑛𝑖 + 1)

2
− 𝑅𝑆𝑖,𝑗,𝑑 (3.16) 

where Ui,j,d is the U-test statistic for the presence of land-use class j at a distance d from cells 

that transitioned to land-use class i, ni is the number of newly allocated cells of class i, n is the 

total number of cells in the landscape, and RSi,j,d is the sum of the ranks of the distribution of 

the relative composition for the presence of land-use class j at a distance d from cells that 
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transitioned to land-use class i. The U-test statistic is also calculated for the ranks of the relative 

composition of a specific land-use class j at a distance d for all cells: 

 
𝑈𝐶,𝑗,𝑑 = 𝑛𝑖 ∙ 𝑛 + 

𝑛(𝑛 + 1)

2
− 𝑅𝑆𝐶,𝑗,𝑑 (3.17) 

where Uc,j,d is the U-test statistic for the presence of land-use class j at a distance d of all cells 

C, and RSc,j,d is the sum of the ranks of the distribution of the relative composition for the 

presence of land-use class j at a distance d of all cells C. The final U-test statistic used is the 

minimum of the two that are calculated. 

For this proposed application, the samples are sufficiently large that a normal approximation 

can be generated for the determination of significance, which corresponds to Zd in Equation 

3.12: 

 
𝑍(𝑖, 𝑗)𝑑 = 

min{𝑈𝑖,𝑗,𝑑, 𝑈𝐶,𝑗,𝑑} − 𝑥̅𝑈

𝑠𝑈
 (3.18) 

where Zd is the z-score approximation for the presence of land-use class j at a distance d of 

cells that transitioned to land-use class i, 𝑥̅𝑈 is the mean of the data, and sU is the standard 

deviation of the data. 

3.3.2 Parameter categorisation and initialisation 

The parameter categorisation and initialisation stage further reduces the dimensionality of the 

calibration problem to facilitate initialising the LUCA model with a set of neighbourhood rule 

weighting parameter values for subsequent coarse calibration (Figure 3.3) by using a method 

to efficiently generate a set of neighbourhood rules that are consistent with process 

understanding. The categorisation process achieves this across two steps, discussed in detail 

below. 

The first step is the introduction of a set of meta-parameters, 𝜃𝐶𝑃
0 , 𝜃𝑆𝑇

0 , and 𝜃𝐶𝑇
0 , which describe 

the inter-type importance of each interaction type 𝑃𝐶𝑃
′ , 𝑃𝑆𝑇

′ , and 𝑃𝐶𝑇
′  with respect to the inertia 

point type interaction type 𝑃𝐼𝑃
′ . The meta-parameters quantify how important each interaction 

type is relative to the inertia point interaction type, which is assumed to be the dominant process 

(e.g. the meta-parameter quantifies how important the 𝑃𝐶𝑃
′  interactions are compared to the 𝑃𝐼𝑃

′  

interactions). For example, high values of 𝜃𝐶𝑃 mean conversion points exhibit similar influence 

to inertia points, which will likely cause more conversion. The meta-parameters range from 

zero to one, and are set by the user (note that a value of 1 places the interactions at the same 
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level of importance as the inertia point interactions). Recommended ranges are between 0 and 

0.1 for all meta-parameters. 

The second step is the categorisation of the parameters included for calibration within each 

interaction type. This achieves a discretisation of the corresponding weighted influence values 

(wi,j,d), where rather than taking values from a continuum, they are restricted to a set of finite 

values. This categorisation establishes a hierarchy of the intra-type importance of each 

interaction for each type of interaction (e.g. how important interaction (i,j)0 is compared to 

(i,k)0 for both (i,j)0, (i,k)0 ∈ 𝑃𝐶𝑃
′ ). Categorisation is based on an empirical analysis of the 

available data.  

A result of the proposed categorisation method is that the weighting parameters for the 

interactions 𝑃𝐼𝑃
′ , 𝑃𝐶𝑃

′ , 𝑃𝑆𝑇
′ , and 𝑃𝐶𝑇

′  are given by the following representations: 

 

{
 
 

 
 
𝑤𝑖,𝑖,0 = 𝑤̃𝑖,𝑖,0                        

𝑤𝑖,𝑗,0 = 𝜃𝐶𝑃
0  ∙  𝑤̃𝑖,𝑗,0            

𝑤𝑖,𝑖,𝑑 = 𝜃𝑆𝑇
0  ∙  𝑤̃𝑖,𝑖,1 ∙ 𝑢(𝑑)

 𝑤𝑖,𝑗,𝑑 = 𝜃𝐶𝑇
0  ∙  𝑤̃𝑖,𝑗,1 ∙ 𝑢(𝑑)

 (3.19) 

where 𝜃𝐶𝑃
0 , 𝜃𝑆𝑇

0 , and 𝜃𝐶𝑇
0  are the meta-parameters that are heuristically assigned and take values 

between 0 and 1, and 𝑤̃𝑖,𝑗,𝑑  are the normalised weighting parameters that take values from the 

discretised parameter space {𝑤̃𝑖,𝑗,𝑑,[1],…, 𝑤̃𝑖,𝑗,𝑑,[𝐾]}, where K is the number of discrete levels. 

So, for example, if an interaction type has three levels, low, medium and high, the weights take 

values from the set range {wi,j,d,[1], wi,j,d,[2], wi,j,d,[3]}.  

The parameter categorisation is based on an empirical evaluation of the available data. A point 

or tail for each interaction type is assigned as follows: 

 

𝑤̃𝑖,𝑗,𝑑 = 

{
 

 
𝑤̃𝑖,𝑗,𝑑,[1] 

𝑤̃𝑖,𝑗,𝑑,[2]
⋮

𝑤̃𝑖,𝑗,𝑑,[𝐾]

 

if 𝑇𝑘((𝑖, 𝑗)𝑑, 𝑿̂) ≤  𝐼𝑘
1 

(3.20) 
if 𝐼𝑘

1 < 𝑇𝑘((𝑖, 𝑗)𝑑, 𝑿̂) ≤  𝐼𝑘
2 

⋮ 
if 𝐼𝑘

𝐾−1  ≤  𝑇𝑘((𝑖, 𝑗)𝑑, 𝑿̂) 
where Tk is the empirically determined threshold value for interaction type k (i.e. IP, CP, ST, 

CT), d is either 0 or 1, defining either a point or a tail, and 𝐼𝑘
𝑛 is the upper threshold value for 

importance category n (different for each interaction type, where higher n means higher 

importance). 

The categorisation of the different interaction types uses the measures previously derived in 

Section 3.3.1.2, shown in Table 3.2. The 𝑃𝐼𝑃
′  and 𝑃𝐶𝑃

′  interactions are categorised using 
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measures derived from the contingency table, the inertia rate and conversion rate, respectively. 

The 𝑃𝑆𝑇
′  and 𝑃𝐶𝑇

′  interactions are categorised using the enrichment factor values at distance d 

equal to one. Thresholds (Ik) for the different groups are set by the user. 

Table 3.2. Summary of empirical measures used to categorise different interaction types for 

the proposed categorisation 

Interaction type Empirical measure Functional form Equation 

Inertia point Inertia rate IRi 3.13 

Conversion point Conversion rate CRi,j 3.14 

Self-influence tail Enrichment factor EFi,i,1 3.15 

Cross-influence tail Enrichment factor EFi,j,1 3.15 

 

Hence, given that each interaction type uses the same number of levels, the calibration 

complexity has been reduced so that the LUCA model neighbourhood rules are characterised 

by three meta-parameters, and weighting parameter values for each discrete level across all 

interaction types. The model can be initialised by specifying these values, and the required 

thresholds, to generate an initial parameter estimate 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙
′ . 

3.3.3 Coarse parameter adjustment 

The coarse parameter adjustment stage calibrates the neighbourhood weighting parameters at 

a coarse level to improve LUCA model performance by tuning the categorised neighbourhood 

weighting parameters introduced in Section 3.3.2 (Figure 3.3). The coarse parameter 

adjustment facilitates the initialisation of the fine parameter adjustment process at a starting 

point within the parameter space that results in objectively good performance and is consistent 

with process understanding. Model performance is measured by comparing the simulated 

output with the data using at least two metrics, as discussed in the Section 3.1, one to quantify 

locational agreement and another to quantify landscape pattern structure. Model performance 

is improved by generating a set of parameters 𝑊𝐶𝑃
𝑐𝑜𝑎𝑟𝑠𝑒, 𝑊𝑆𝑇

𝑐𝑜𝑎𝑟𝑠𝑒, and 𝑊𝐶𝑇
𝑐𝑜𝑎𝑟𝑠𝑒 through the 

coarse adjustment of the meta-parameters 𝜃𝐶𝑃, 𝜃𝑆𝑇, and 𝜃𝐶𝑇. Within this stage, the parametric 

representation (Equation 3.19) is retained, but the meta-parameters are varied about the initial 

settings. 

By using the neighbourhood weighting parameterisation from Equation 3.19, the weights can 

be expressed as functions of the meta-parameters such that: 
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{

𝑤𝐶𝑃 = 𝑤𝐶𝑃(𝜃𝐶𝑃)

𝑤𝑆𝑇 = 𝑤𝑆𝑇(𝜃𝐼𝑇)
𝑤𝐶𝑇 = 𝑤𝐶𝑇(𝜃𝐶𝑇)

  (3.21) 

Using this formulation, the initial parameter set is given by: 

 

{

𝑤𝐶𝑃
0 = 𝑤𝐶𝑃(𝜃𝐶𝑃

0 )

𝑤𝑆𝑇
0 = 𝑤𝑆𝑇(𝜃𝑆𝑇

0 )

𝑤𝐶𝑇
0 = 𝑤𝐶𝑇(𝜃𝐶𝑇

0 )

  (3.22) 

As outlined above, the coarse level parameter adjustment is performed by adjusting the meta-

parameters to optimise the objectives of calibration performance. Formally, the goal is to 

identify a set of meta-parameters 𝜽∗ = {𝜃𝐶𝑃
∗ , 𝜃𝑆𝑇

∗ , 𝜃𝐶𝑇
∗ }, that result in non-dominated calibration 

performance (i.e. improved performance in one objective cannot be achieved without declined 

performance in the other objective) to the bi-objective problem: 

 max𝑓1( 𝑊′(𝜽), 𝑿̂𝑎)

min 𝑓2(𝑊′(𝜽), 𝑿̂𝑎)
 (3.23) 

where f1 corresponds to the locational agreement objective between the calibration data map 

𝑿̂𝑎 and the LUCA model simulation map 𝑿𝑎, which is a function of W’(θ), and f2 corresponds 

to the landscape pattern structure objective, measured as the error between the calibration data 

map 𝑿̂𝑎 pattern, and the LUCA model simulation map 𝑿𝑎 pattern, which is a function of W’(θ). 

As opposed to determining every set of meta-parameters that optimises the objective, an 

approximate (and more computationally efficient approach) is implemented as shown in Figure 

3.6. In this approach, one meta-parameter is varied at a time, within each stage, allowing for 

an explicit consideration of the non-dominated solutions subject to the variation of the single 

meta-parameter under consideration. Within this process, user input is required to select the 

best meta-parameter value from the set of solutions. This is an important step in the process as 

it allows the user to make a judgement as to which meta-parameter value is best based on 

additional subjective criteria (e.g. user experience and/or consideration of landscape features 

not characterised by the objective metrics). The selected meta-parameter value, as shown in 

Figure 3.6, is then used within the subsequent stages, where the other meta-parameters are 

varied one at a time. The final set of meta-parameters 𝜽∗  is obtained at the conclusion of the 

coarse adjustment stage. 
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Figure 3.6. Iterative procedure for performing coarse parameter adjustment where meta-

parameters are tuned. 

 

3.3.4 Fine parameter adjustment 

The fine parameter adjustment further calibrates the neighbourhood weighting parameters, 

refining those obtained after the coarse adjustment stage to generate a final set of calibrated 

neighbourhood weighting parameters for subsequent validation and future scenario analysis 

(Figure 3.3). The fine parameter adjustment stage is initialised using the output of the coarse 

adjustment stage, as this corresponds to a good starting point in the parameter space that has 

objectively good performance and agreement with process understanding. As with the coarse 

level adjustment, locational agreement and landscape pattern structure metrics are used to 

objectively assess calibration performance. 

The fine parameter adjustment stage considers the neighbourhood weighting parameters on an 

individual level, rather than the meta-parameters, as was the case in the coarse parameter 

adjustment stage, iteratively refining each to optimise the performance metrics used, within the 

available number of iterations (computational budget). This is achieved using a line-search 

algorithm, as shown in Figure 3.7, because this is an automatic search method that efficiently 

converges on a parameter value that locally optimises the objectives. The specific 

neighbourhood weighting parameter wi,j,d, corresponding to one of the four interactions groups, 

is assumed to lie within a range for which a certain value optimises the performance metrics 

used. The line-search is conducted using the Golden-section search algorithm. 

The over-arching structure of the sequential line-search algorithm is as follows. The working 

parameter set W’ is initialised to the values obtained at the conclusion of the coarse calibration, 
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as shown. Then, the algorithm loops through the interaction types (in order of importance that 

is user defined and case study dependent, generally inertia points, self-influence tails, 

conversion points and cross-influence tails). For each type, the algorithm sequentially loops 

through all weighting parameters, searching between a set of user-defined minimum and 

maximum neighbourhood weighting parameter values 𝑤𝑖,𝑗,𝑑
𝑀𝑖𝑛 and 𝑤𝑖,𝑗,𝑑

𝑀𝑎𝑥 to determine the refined 

value 𝑤𝑖,𝑗,𝑑
𝑓𝑖𝑛𝑒

 that maximises the specified objective ffine (discussed below), subject to all other 

parameters being held constant. The working parameter set is updated when the refined 

variable value is obtained, and the procedure continues through the loop until the computational 

budget is exhausted, returning the final set, 𝑊𝑓𝑖𝑛𝑎𝑙
′ , composed of the refined neighbourhood 

weighting parameters. 

Figure 3.7. Iterative procedure for performing fine parameter adjustment via a line-search 

algorithm applied to individual neighbourhood weighting parameters 

 

The line-search uses a single objective, ffine, to characterise the calibration performance of the 

proposed parameter set. As discussed previously, multiple objectives are required to 

characterise the performance of LUCA models, so ffine is taken as the weighted sum of the 

objectives: 

 
𝑓𝑓𝑖𝑛𝑒(𝑊′, 𝑿̂) =  ∑𝑎𝑖𝑓𝑖(𝑊′, 𝑿̂)

𝑚

𝑖=1

 (3.24) 
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where fi is the ith objective, ai is the user-defined weight given to the ith objective (all weight 

values sum to one), and m is the number of objectives. As ffine is the sum over both locational 

agreement and landscape pattern structure error, each metric must be transformed into a 

maximisation objective (e.g. reverse the sign of the metric of minimisation objectives). 

Additionally, to mitigate potential issues with variable ranges of the metrics, the objectives are 

scaled to values between 0 and 1, using metric ranges as the normalising upper and lower 

bounds that are defined by the user. It is important that the metrics used are appropriately 

balanced to achieve a trade-off between the performance objectives to ensure robust calibration 

and to prevent over-calibration. 

The proposed approach assumes a model structure sufficiently general to capture the major 

land-use change processes in a region. This assumption allows for a focus on efficient 

calibration, where all objectives can be combined using a single weighted sum. However, this 

does limit the ability to fully explore the trade-off between the objectives, which can obscure 

more fundamental modelling issues. A notable example would be if a balance between 

locational agreement and landscape pattern structure cannot be easily achieved (White et al., 

2015), where the calibrated model performs well in either metric, but not both. This is important 

to consider, as it might suggest more fundamental structural model issues, such that the LUCA 

model does not fully capture major land-use change processes. Identifying and addressing such 

structural problems are not a primary focus of this work, but this is an important issue to 

consider that warrants future research. 

3.4 Application of proposed approach 

The utility of the proposed semi-automatic calibration method for neighbourhood rules is 

evaluated using the following computational testing regime. The approach is applied to 

calibrate the neighbourhood rules of four case studies in Europe, comparing the output obtained 

based on the preference for different objectives, and evaluating the performance against neutral 

models of landscape change that are used to generate benchmark metric values for calibration 

performance (Hagen-Zanker and Lajoie, 2008). 

3.4.1 Land-use model 

The LUCA model Metronamica is used to model land-use changes. Metronamica is a generic, 

constrained CA modelling framework (Van Delden and Hurkens, 2011) that has numerous 

global applications (Wickramasuriya et al., 2009, Rutledge et al., 2008, Van Delden et al., 

2011). Metronamica is derived from the transition potential model developed by White and 
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Engelen (1993c), and hence includes neighbourhood rules in the determination of land-use 

changes. Metronamica follows the convention for the calculation of transition potential 

(Equation 3.4), where the additional processes considered via parametric maps are given by: 

 𝛩𝑐,𝑖 = 𝐴𝑐,𝑖  ∙  𝑆𝑐,𝑖  ∙  𝑍𝑐,𝑖 (3.25) 

where Ac,i is the influence of accessibility, Sc,i is the influence of suitability, and Zc,i is the 

influence of zoning. The specific parameterisation of each component is given in the 

Metronamica documentation (RIKS, 2015). 

3.4.2 Case studies 

The four case studies used for testing include Berlin, Germany; Budapest, Hungary; Lisbon, 

Portugal; and Madrid, Spain, and their surrounding regions, shown in Figure 3.8. These case 

studies are selected to enable the approach to be tested under a range of different conditions, 

given the variation in physical characteristics (e.g. coastal or inland, high or low elevation) and 

rates of urban growth (e.g. low for Berlin, moderate for Budapest, and high for Lisbon and 

Madrid, see Supplementary material 3C for contingency tables) of these locations. 

The CORINE land-use data set (Haines-Young et al., 2006) is used to generate the land-use 

maps for the case studies. Each case study uses 15 land-use classes, eight of which are actively 

modelled, which are reclassified from the 48 CORINE level 3 land-use classes, with a 250-

metre resolution covering a region of 10,000 km2 (400 by 400 cells), centrally located on the 

city centre. The calibration period for each case study is 1990-2000 and the validation period 

is 2000-2006. Each case study includes major road data for accessibility. 
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Figure 3.8. 1990 land-use maps of the four European case studies. 

 

3.4.3 Implementation of proposed methodology 

For each of the case studies, the Empirical Neighbourhood rule Calibrator (ENC) software 

developed as part of this work is applied. As each case study uses the same number of total and 

active land-use classes, each is implemented with the same number of possible neighbourhood 

interactions and possible neighbourhood weighting parameters. 
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3.4.3.1 Interaction elimination 

To conduct the interaction elimination stage, the thresholds presented in Table 3.3 are used for 

the empirical neighbourhood analysis. Only conversion points and cross-influence tails are 

eliminated for this proposed implementation, because all eight active classes for each case 

study are expected to exhibit inertia and self-influence. A conversion rate of 2.5% is used as a 

minimum threshold as this prevented infrequent and erroneous conversions present in the data, 

such as conversions from fresh water to residential land-use, from being included in the 

subsequent calibration. To demonstrate the most straight-forward application possible, the 

interaction elimination is applied to only identify attractive cross-influence tails, and does not 

consider repulsive cross-influences. Log-scaled enrichment factor values at distance one that 

indicated over-representation (i.e. greater than 0), and hence hint at a possible attractive 

influence between different land-uses, are used for the empirical analysis of cross-influence 

tails. A minimum z-limit of 1.96, the 95% confidence limit, is used as the statistical significance 

level for both conversions points and cross-influence tails. 

Table 3.3. Thresholds used for inclusion in calibration 

Interaction type Td Zd 

Conversion point CRi,j > 2.5 % Zi,j,0 > 1.96 

Cross-influence tail Log10(EFi,j,1) > 0 Zi,j,1 >1.96 

 

The results of the parameter elimination are summarised in Figure 3.9, which shows the 

parameter reduction per case study for each interaction type. As shown, the implemented 

parameter elimination for the conversion points and cross-influence tails resulted in a 

substantial reduction in the number of interactions considered for each case study. The 

interactions that are included were generally consistent with process knowledge. For example, 

it is expected that attractive influences exist between the urban classes residential, industry & 

commerce, and recreation areas, given the limited number of urban classes. However, there 

are also examples, such as conversion points from agricultural land-uses to urban land-uses, 

which represent a case where the land-use is desirable for urban land-uses because it acts as a 

supply of vacant land, rather than being specifically attractive based on the agricultural land-

use class. Such examples highlight the potential benefits of making the calibration procedure 

semi-automatic, as discursive knowledge can identify such parameters and remove them from 

subsequent calibration, or ensure these influences are minimised by the calibration procedure. 
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Figure 3.9. Number of interactions considered for conversion points and cross-influence 

tails before and after the interaction elimination stage for each case study 

 

3.4.3.2 Parameter categorisation 

To conduct the parameter categorisation stage, three possible categories, including low, 

medium, and high, are used for each case study. This allowed for sufficient differentiation of 

weighting parameter values for each interaction type. The threshold values for the categories 

used for each type of interaction are the same for each case study, and are presented in Table 

3.4. Interactions not exceeding the medium threshold are graded as low. The values used are 

based on knowledge of the case studies, and some trial-and-error analysis to ensure sufficient 

category variation across the case studies. 

Table 3.4. Thresholds used for categorisation of parameters as high, medium or low for each 

interaction type 

Interaction type 𝑰𝒌
𝑯𝒊𝒈𝒉

 𝑰𝒌
𝑴𝒆𝒅 𝑰𝒌

𝑳𝒐𝒘 

Inertia point IRi ≥ 95% IRi ≥ 90% IRi < 90% 

Conversion point CRi,j ≥ 50% CRi,j ≥ 10% CRi,j < 10% 

Self-influence tail Log10(EFi,i,1) ≥ 1.0 1.0 > Log10 (EFi,i,1) ≥ 0.5 Log10 (EFi,i,1) < 0.5 

Cross-influence tail Log10 (EFi,j,1) ≥ 1.0 1.0 > Log10 (EFi,j,1) ≥ 0.5 Log10 (EFi,j,1) < 0.5 
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At this stage, a neighbourhood shape function that describes the distance-decay of the 

neighbourhood influence is used to aggregate self-influence and cross-influence tail 

neighbourhood weighting parameters. To make the calibration as efficient as possible, an 

aggregation strategy is used that aggregates tails to a set of key points (White et al., 1997), an 

influence value at distance one, an influence value at distance two that is ten percent of the 

influence at distance one, and a point at distance five where influence is set to zero. Using this 

strategy, each self-influence and cross-influence tail is represented by a single weighting 

parameter at distance one, reducing the complexity of the calibration problem. 

To generate the initial neighbourhood weighting parameters, the inertia point parameters are 

set such that high inertia is assumed to have double the influence of medium inertia, and 

medium inertia is assumed to have double the influence of low inertia, using values of 1,000, 

500 and 250 for high, medium and low inertia, respectively. The initial meta-parameters used 

are presented in Table 3.5. The values used are based on the case studies, which are mostly 

characterised by persistence, resulting in the highest values for the self-influence tail meta-

parameter and lower values for the conversion point and cross-influence tail meta-parameters. 

3.4.3.3 Coarse parameter adjustment 

The coarse parameter adjustment stage is conducted using the ranges and step-sizes for each 

meta-parameter given in Table 3.5. The order of the meta-parameter sampling is θST, θCP, and 

θCT, ordered by the impact (i.e. value range) on the output metrics obtained. The ranges are 

determined based on discursive knowledge and some trial-and-error analysis, with values 

outside the ranges given in Table 3.5 resulting in poor performance in all objectives. 

Table 3.5. Ranges and step sizes tested for meta-parameter sampling 

Meta-

parameter 

Initial 

(𝜽𝒌
𝟎) 

Minimum Maximum Step-size Intervals 

θST 0.050 0.00 0.10 0.005 20 

θCP 0.025 0.00 0.05 0.0025 20 

θCT 0.005 0.00 0.02 0.001 20 

 

To evaluate locational agreement, two variations of Cohen’s Kappa are used, Fuzzy Kappa 

(FK) developed by Hagen-Zanker (2009), and Fuzzy Kappa Simulation (FKS) developed by 

Van Vliet et al. (2013b). As both metrics are derivatives of Cohen’s Kappa, they measure the 

observed agreement between two categorical data sets, corrected for the agreement expected 

from random allocation of the given class sizes, with fuzziness allowing for the consideration 
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of partial agreement of location and class. The major distinction between the two metrics is 

that FK considers the entire land-use map for the calculation of agreement, whereas FKS only 

considers the transitioned cells. Both metrics are used because the variation in the measurement 

of agreement can impact the results obtained (Newland et al., 2018a). 

To measure landscape pattern structure, the error of the simulated and observed clumpiness for 

the actively modelled land-use classes is used. Clumpiness is a measure of the proportional 

deviation of the proportion of like adjacencies from that expected under a spatially random 

distribution for a specific land-use class (McGarigal, 2014). As clumpiness is measured at the 

class level, it requires aggregation to a single value. Previous calibration methods that used the 

average class level clumpiness (Newland et al., 2018a) found this is not an ideal aggregation 

strategy, because it can over-emphasize relatively minor land-use classes that occupy a 

relatively small amount of the total landscape. Hence, the absolute Area-Weighted Clumpiness 

Error (AWCE) of the actively modelled land-use classes is used, as this provides a better 

landscape-centric perspective by emphasizing the classes that occupy the greatest area within 

the region. 

Given the potential uncertainty surrounding the impact of the different metrics on the 

performance of the proposed approach, three combinations of metrics are used, as shown in 

Table 3.6. Each combination includes a metric for locational agreement and landscape pattern 

structure. FK and FKS are included together in set three to provide further insight into how 

these objectives affect the performance of the proposed approach.  

Table 3.6. Combinations of metrics used as objectives for calibration 

Set Metrics 

1 FK, AWCE  

2 FKS, AWCE 

3 FK, FKS, AWCE 

 

During the coarse adjustment stage, two types of behaviour are observed in the objective space, 

which dictates the selection of the meta-parameter value (Figure 3.10). The first type of 

behaviour is convergent, shown in plot a for the FKS and AWCE values for the range of θST 

values sampled for the Madrid case study. As shown, there is a meta-parameter value that 

produces both the best FKS and AWCE value, which makes selecting the meta-parameter value 

straightforward. The second type of behaviour observed is a trade-off, shown in plot b for the 

FKS and AWCE values for the range of θST values sampled for the Berlin case study. As shown, 
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improved performance in FKS results in reduced performance in AWCE (as the error 

increases). In this case, selection of the most appropriate meta-parameter requires further 

interpretation from the user, as the selection of a meta-parameter value requires a preference 

for a certain trade-off between objectives, which impacts the fine parameter adjustment starting 

position and hence the resultant final output. 

Figure 3.10. Example of the different behaviour observed in the objective space for FKS and 

AWCE when tuning a meta-parameter: convergent (a), where the selected point optimises 

both metrics, and trade-off (b), where improved performance in one objective results in 

reduced performance in the other. A trade-off requires user interpretation to preference a 

certain trade-off between objectives. 

 

3.4.3.4 Fine parameter adjustment 

The fine parameter adjustment stage of calibration uses the combinations of metrics listed in 

Table 3.6. The resultant output obtained from the fine parameter adjustment stage is heavily 

influenced by the weight and ranges used for each metric, allowing the user to preference a 

certain objective. An example is shown in Figure 3.11 for the trajectory of the metrics whilst 

conducting the fine parameter adjustment for the Lisbon case study using the objectives FK 

and AWCE. As shown, given the same starting point, a preference for either locational 
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agreement, landscape pattern structure, or a balance between the two, has a large impact on 

both the trajectory and the final metric values obtained. 

Figure 3.11. Example of the different behaviour observed in the objective space for FK and 

AWCE during fine adjustment of the Lisbon case study, based on a preference for a certain 

objective. A preference tends to strongly bias the results to a certain metric, and a balanced 

preference can lead to improvement in both metrics. 

 

Given the possible variation that can be achieved, three tests are conducted for each set of 

metrics for each case study in order to test the impact of the selection of this preference on the 

performance of the proposed algorithm: one test that purely focuses on improving Locational 

Agreement (LA), one test that purely focuses on improving Landscape Pattern Structure (LPS), 

and one test that balances improvements in both objectives. The weightings used for each test 

are summarised in Table 3.7. As shown, total preference for a specific objective is achieved by 

weighting the other objective(s) as zero, essentially making the problem single objective. This 

is to highlight potential issues with using a single objective, as this will likely result in over-

calibration. It should be noted that FK and FKS are evenly weighted for the case where both 

are used and there is preference for locational agreement, or a balanced preference. 
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Table 3.7. Weighting used for each metric depending on objective preference 

Metrics Preference FK weight FKS weight AWCE 

weight 

FK, AWCE 

LA 1.00 N/A 0.00 

Balanced 0.50 N/A 0.50 

LPS 0.00 N/A 1.00 

FKS, AWCE 

LA N/A 1.00 0.00 

Balanced N/A 0.50 0.50 

LPS N/A 0.00 1.00 

FK, FKS, AWCE 

LA 0.50 0.50 0.00 

Balanced 0.25 0.25 0.50 

LPS 0.00 0.00 1.00 

 

As noted in Section 3.3.4, the metrics are scaled to between 0 and 1 by using practical ranges 

that are defined by the user. The selected ranges are partially informed by the results of the 

meta-parameter analysis, but some trial-and-error is required, particularly in the cases with a 

balanced preference, to achieve the best possible objectives for different case studies. 

3.4.4 Computational tests 

To evaluate the utility of the proposed approach as objectively as possible, the calibration and 

validation performance obtained using the approach is compared with that achieved using two 

benchmark performance models that replicate common urban growth strategies. These models 

include the Random Constraint Match (RCM) neutral model (RIKS, 2011), which generates 

reference maps characterised by a speckled distribution of small clusters of each land-use class, 

and the Growing Clusters (GC) neutral model (Van Vliet et al., 2013b), which generates 

reference maps characterised by agglomerated distributions of large clusters of each land-use 

class (generated using the default neighbourhood rule settings in Metronamica). If the 

performance of the calibrated LUCA model exceeds that of the benchmark models, the LUCA 

model can be considered to have captured the processes driving land use change correctly 

(Hagen-Zanker and Lajoie, 2008). For this research, ten reference maps are generated for each 

case study for both the calibration and validation period, and reference metrics calculated for 

each reference map. 

To evaluate the output 50 model replicates with different LUCA model random seeds are run 

with the set of neighbourhood weighting parameters obtained at the end of the proposed 

calibration approach for the calibration (1990-2000) and validation (2000-2006) periods. For 



97 

 

each simulated output map, a number of performance metrics are calculated. First, the average 

metrics of the simulated output are compared with the average benchmark metrics, to determine 

whether the benchmarks are outperformed. In this case, this corresponds to the average FK or 

FKS values for the simulated output being greater than the average benchmark values, and the 

average AWCE value being less than the average benchmark values. The metric values 

obtained are then compared with the corresponding metrics for the benchmark models using 

Welch’s t-test of statistical significance (Welch, 1947), a method of comparing two 

independent samples with varying size and variance that obey parametric assumptions, at the 

95% confidence limit, to determine whether the average of the output metrics is significantly 

better or worse than the benchmark metrics obtained from a statistical perspective. 

3.5 Results and discussion 

This section presents the results of the application of the computational tests outlined in Section 

3.4.4. The results demonstrate how to determine a final calibrated model for each case study 

based on the different configurations tested. To do this, first an objective evaluation is 

conducted for the calibration and validation periods in comparison to the benchmark models. 

The performance is summarised in Figures 3.12 and 3.13 respectively, with green colouring 

indicating that performance of the models calibrated with the proposed approach is statistically 

significantly better (at the 95% confidence limit) than that of both benchmark models, yellow 

that model performance is superior to one benchmark and inferior to the other, and red that 

model performance is inferior to both benchmarks. In Figures 3.12 and 3.13 the average metric 

value across the 50 model replicates is shown, as there tended to be limited spread across the 

different replicates (see box-plots in Supplementary material 3D). Configurations that 

outperform all benchmarks are then evaluated for their physical plausibility. First, the 

simulated output maps are compared with the data using visual interpretation. At this stage, if 

multiple configurations have resulted in superior performance, a solution is selected that 

produces the simulated output most consistent with process knowledge. The parameters of this 

solution are then evaluated against discursive knowledge, to determine if the calibrated model 

is consistent with expectation. 

3.5.1 Objective evaluation 

3.5.1.1 Calibration performance 

The performance of the different configurations applied to the case studies for the calibration 

period is summarised in Figure 3.12. As shown, the performance is generally significantly 

better than the benchmarks for the calibration period, irrespective of the metrics used and the 
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preference for a particular objective, reflected by a majority of the cells being green. This 

highlights the overall robustness of the proposed approach. A detailed discussion of the impact 

of the choice of metrics and preference on the robustness of the proposed approach is given in 

the subsequent sections. 

Preference Locational agreement Balanced Landscape pattern 

structure 

Metrics Case FK FKS AWCE FK FKS AWCE FK FKS AWCE 

F
K

 v
s 

A
W

C
E

 Berlin 0.947 0.053 0.008 0.945 0.046 0.005 0.938 0.014 0.001 

Budapest 0.923 0.076 0.017 0.921 0.086 0.009 0.917 0.047 0.001 

Lisbon 0.894 0.087 0.019 0.892 0.078 0.006 0.876 0.011 0.002 

Madrid 0.919 0.186 0.007 0.907 0.138 0.002 0.894 0.124 0.001 

F
K

S
 v

s 

A
W

C
E

 Berlin 0.917 0.065 0.035 0.946 0.061 0.003 0.938 0.010 0.001 

Budapest 0.881 0.100 0.040 0.918 0.077 0.006 0.915 0.047 0.001 

Lisbon 0.872 0.128 0.025 0.872 0.102 0.004 0.874 0.011 0.001 

Madrid 0.907 0.198 0.014 0.902 0.139 0.001 0.894 0.124 0.001 

F
K

 &
 F

K
S

 

v
s 

A
W

C
E

 

Berlin 0.947 0.068 0.006 0.947 0.062 0.007 0.938 0.010 0.001 

Budapest 0.921 0.094 0.015 0.919 0.082 0.008 0.915 0.047 0.001 

Lisbon 0.886 0.106 0.021 0.891 0.082 0.006 0.876 0.011 0.002 

Madrid 0.905 0.198 0.013 0.913 0.192 0.005 0.894 0.124 0.001 

Figure 3.12. Average metric values for 50 model replicates compared to two sets of benchmark 

model metrics using statistical significance testing at the 95% confidence level for the 

calibration period. Cells are coloured by performance compared to the benchmark, green 

indicates the average is significantly superior to both benchmarks, yellow indicates the average 

is significantly superior to one benchmark, and red indicates the average is inferior to both 

benchmarks. 

 

The performance across all three metrics (FK, FKS and AWCE) is particularly good when 

locational agreement and landscape pattern structure are balanced, as there are only two cases 

where both benchmarks are not exceeded significantly (Figure 3.12). These results suggest that 

the proposed approach can identify parameter combinations that result in modelled land-use 

dynamics that successfully balance locational agreement and landscape pattern structure. 

When locational agreement is favoured during the fine adjustment stage, values of FK and FKS 

are generally higher than when landscape pattern structure is favoured or a balanced approach 

is used, as shown in Figure 3.12. However, this comes at the expense of landscape pattern 

structure accuracy, the performance of which deteriorates (i.e. values of AWCE are increased) 

to the point where values are only significantly better than all benchmark values in half the 

results. This indicates that it is difficult to achieve results that satisfy both locational agreement 

and landscape pattern structure when only locational agreement is considered during the fine 

adjustment process and that a balanced approach is needed to achieve acceptable performance 
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for both locational agreement and landscape patter structure, which is also consistent with the 

findings of Newland et al. (2018a). 

Values of FKS are significantly better than all benchmarks for all case studies and objective 

function combinations when locational agreement is favoured during the fine adjustment 

process. However, somewhat surprisingly, this is not the case when FK is used as the 

performance metric. As can be seen from Figure 3.12, when FKS and AWCE are used as 

objectives, FK values are only significantly better than all benchmarks for the Madrid case 

study, and for Berlin and Budapest are significantly worse than both benchmarks. This likely 

occurs because the use of FKS as the sole objective places an over-emphasis on capturing the 

transitions that are present in the data, with insufficient weight given to inertia. This is 

especially important for cases where there is low or moderate growth, such as Berlin and 

Budapest. However, in cases with high growth, such as Madrid, this impact is less pronounced. 

When there is a preference for landscape pattern structure during the fine adjustment process, 

values of AWCE are superior (i.e. less) to those obtained when there is a preference for a 

different objective, as shown in Figure 3.12. However, the singular focus on landscape pattern 

structure has a detrimental impact on the metrics used to measure locational agreement. This 

is most noticeable for the FK values, where both benchmarks are only exceeded in three cases, 

all for the same case study (Budapest). 

3.5.1.2 Validation performance 

The general performance of the different configurations applied to the different case studies 

for the validation period is summarised in Figure 3.13. As shown, the results for the validation 

period generally follow the same trends as for the calibration period in that a balanced 

preference between locational agreement and landscape pattern structure results in the best 

overall results, while solely favouring locational agreement or landscape pattern structure 

results in a deterioration in performance of the other objective, to the point that it is much less 

likely that corresponding benchmarks are exceeded. Specifically, when a balanced approach is 

used in conjunction with either FK and AWCE or FK, FKS and AWCE as objectives, validation 

performance is significantly better than that of all benchmarks for all metrics for three of the 

four case studies considered, as well as outperforming both benchmarks in most cases for the 

other case study and only performing significantly worse than both benchmarks in one out of 

twenty four cases (i.e. FK for Budapest when a balanced approach is used in conjunction with 

FK and AWCE as objectives). This suggests that the proposed approach is capable of 
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generating results for both calibration and validation periods that perform significantly better 

(at the 95% confidence level over 50 replicates) for all three performance metrics in almost all 

experiments, provided both locational agreement and landscape pattern structure are 

appropriately balanced during the fine adjustment process, and FKS is not used as the sole 

objective quantifying locational agreement. 

Preference Locational agreement Balanced Landscape pattern 

structure 

Metrics Case FK FKS AWCE FK FKS AWCE FK FKS AWCE 

F
K

 v
s 

A
W

C
E

 Berlin 0.970 0.013 0.009 0.972 0.012 0.005 0.970 0.003 0.002 

Budapest 0.899 0.047 0.018 0.899 0.054 0.019 0.902 0.045 0.013 

Lisbon 0.888 0.052 0.019 0.886 0.042 0.011 0.879 0.011 0.006 

Madrid 0.937 0.093 0.008 0.934 0.080 0.006 0.926 0.064 0.007 

F
K

S
 v

s 

A
W

C
E

 Berlin 0.946 0.022 0.026 0.968 0.006 0.004 0.970 0.008 0.003 

Budapest 0.863 0.064 0.036 0.902 0.050 0.016 0.901 0.040 0.011 

Lisbon 0.873 0.077 0.029 0.874 0.054 0.011 0.875 0.004 0.009 

Madrid 0.914 0.089 0.014 0.929 0.073 0.006 0.926 0.064 0.007 

F
K

 &
 F

K
S

 

v
s 

A
W

C
E

 

Berlin 0.969 0.013 0.004 0.970 0.013 0.005 0.970 0.008 0.003 

Budapest 0.898 0.051 0.018 0.907 0.058 0.010 0.901 0.040 0.011 

Lisbon 0.882 0.067 0.024 0.886 0.046 0.013 0.879 0.011 0.006 

Madrid 0.911 0.093 0.014 0.932 0.088 0.008 0.926 0.064 0.007 

Figure 3.13. Average metric values for 50 model replicates compared to two sets of benchmark 

model metrics using statistical significance testing at the 95% confidence level for the 

validation period. Cells are coloured by performance compared to the benchmark green 

indicates the average is significantly superior to both benchmarks, yellow indicates the average 

is significantly superior to one benchmark, and red indicates the average is inferior to both 

benchmarks. 

 

While the validation performance of the models calibrated is significantly better than that of 

both benchmarks when an appropriate balance of objectives and preferences is used, validation 

performance is generally worse than calibration performance, as can be expected, given that 

performance is tuned to the calibration data. This deterioration in performance is particularly 

pronounced for the case studies experiencing less growth (i.e. Berlin and Budapest) and when 

FKS is used as the sole objective for locational agreement. This can be explained by the fact 

that FKS only focuses on transitioned cells, which can result in an over-emphasis on capturing 

the small number of cells that do in fact transition in low-growth cases during the calibration 

period, at the expense of capturing inertia. 

3.5.2 Simulated output evaluation 

This section presents an evaluation of a simulated output map for a configuration that performs 

statistically significantly better than the benchmarks for each case study. The simulated output 

maps are compared with the data via visual inspection, to determine if the resultant simulated 
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output is sufficiently realistic, further verifying the quality of the calibrated model. Overall, the 

results for the four case studies demonstrated that the proposed approach produced realistic 

output maps provided an appropriate balance between locational agreement and landscape 

pattern structure is achieved, as shown in Figures 3.14 to 3.17, and discussed below. 

Figure 3.14 shows the similarity between the simulated output and the data for the Berlin case 

study resulting from a balanced preference with FK and AWCE as the objectives. The 

simulated output appears fairly similar to the data, however, there is some variation between 

the two maps, with the larger amount of residential (red) cells allocated in the western region 

of the simulated output map, as shown in Figure 3.14c. Also, the simulated map for industry & 

commerce (Figure 3.14d) tends to show slightly larger clusters in the simulated output 

compared to the data. 
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Figure 3.14. Berlin data compared with simulated output for the calibration period for 

best performing objective configuration. (a) is the data map, (b) is the simulated output 

map, (c) is the agreement of the class residential (red) between maps (a) and (b), and 

(d) is the agreement of the class industry & commerce (purple) between maps (a) and 

(b). 

 

The similarity between the simulated output and the corresponding data for the Budapest case 

study is shown in Figure 3.15 when a balanced preference is used with FK, FKS and AWCE 

as the objectives. In the Budapest case study, moderate land-use change has taken place over 

the calibration period, and the results obtained show the model captured the inertia well. For 

the changes that did occur, the model did not always allocate the transitions to the correct 

locations, but the size of the simulated clusters resembles the data. This is shown in Figure 

3.15, as there is good agreement between the patterns and locations of the urban classes, 

residential (red) and industry & commerce (purple), as shown in Figures 3.15c and 3.15d, as 

well as recreation areas (brown). This is also true for the major agricultural class, arable land 

(yellow). There is some variation in the amount of interspersion of the classes natural areas 
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(light green) and forest (dark green), with the simulated output producing more clumped areas, 

though this is quite minor.  

Figure 3.15. Budapest data compared with simulated output for the calibration period 

for best performing objective configuration. (a) is the data map, (b) is the simulated 

output map, (c) is the agreement of the class residential (red) between maps (a) and (b), 

and (d) is the agreement of the class industry & commerce (purple) between maps (a) and 

(b). 

 

For the Lisbon case study, the simulated output for a balanced preference with FK, FKS and 

AWCE as the objectives is shown in Figure 3.16. As shown, the general behaviour of the 

simulated output is sufficiently consistent with the data, though there are some differences in 

the newly allocated land-use classes. The simulated residential locations tend to fill in space in 

the urban core, creating larger clusters than in the data. This is shown in Figure 3.16c, as the 

red cells tend to be at the edge of the existing residential area, whereas the blue tends to be 

within the existing residential area. The simulated cluster size of the industry & commerce area 
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resembles the data and while the allocation takes place in similar areas, exact matches were not 

often found, as shown in Figure 3.16d. Also, the high degree of interspersion of the different 

agricultural and natural land-use classes has resulted is a noticeable amount of the class 

pastures (light green) interspersed amongst a region of arable land (dark yellow) in the centre 

of the map for the simulated output that is not present in the data.  

Figure 3.16. Lisbon data compared with simulated output for the calibration period for 

best performing objective configuration. (a) is the data map, (b) is the simulated output 

map, (c) is the agreement of the class residential (red) between maps (a) and (b), and (d) 

is the agreement of the class industry & commerce (purple) between maps (a) and (b). 

 

The consistency between the simulated output and corresponding data for the Madrid case 

study is shown in Figure 3.17 for a balanced preference with FK, FKS and AWCE as the 

objectives. As shown, there is reasonably good agreement for the expansion of the existing 

central urban region, composed of residential (red), industry & commerce (purple) and 

recreation areas (brown). The main variation is that the urban classes in the simulated output 
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appear slightly more clumped than in the data. As shown in Figures 3.17c and 3.17d, there 

tends to be a more speckled distribution of red cells, whereas the blue cells tend to be at the 

fringes of the existing urban region. 

Figure 3.17. Madrid data compared with simulated output for the calibration period for 

best performing objective configuration. (a) is the data map, (b) is the simulated output 

map, (c) is the agreement of the class residential (red) between maps (a) and (b), and (d) 

is the agreement of the class industry & commerce (purple) between maps (a) and (b). 

 

It is worth highlighting that for the low and moderate growth case studies, Berlin and Budapest, 

respectively, there was only one configuration that performed statistically significantly better 

than the benchmarks, meaning only a single solution map required visual inspection and 

interpretation. However, for the high growth case studies (Lisbon and Madrid), more 

configurations resulted in superior benchmark performance. For these situations, visual 

comparison of the simulated output is important to determine the best performing calibrated 

model. An example of this is presented in Figure 3.18, which shows another configuration for 
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the Madrid case, using a balanced preference with FK and AWCE as objectives (Figure 3.18b), 

compared with the data (Figure 3.18a), and the solution that was selected (Figure 3.18c). As 

shown, there is a large variation in the output obtained. Most notably, the alternate solution 

(Figure 3.18b) results in a large, clustered formation of the class industry & commerce (purple) 

in the north region of the map that does not appear in the data, and as such is less realistic than 

the simulated output for the other configuration. This highlights the sensitivity of the output to 

the configuration used, and illustrates why visual inspection is beneficial as further 

interpretation of the output that is not captured with objective assessment alone. 

Figure 3.18. Comparison of simulated output for different Madrid configurations that 

outperformed benchmarks. (a) is the data map, (b) is the simulated output for a balanced 

preference with FK and AWCE as objectives, and (c) is the simulated output for a 

balanced preference with FK, FKS and AWCE as objectives 

 

3.5.3 Parameter analysis 

This section presents an analysis of the parameters for the four solutions corresponding to the 

best objective performance and most realistic simulated output. The parameter analysis is used 

to further verify that the obtained solutions are consistent with process understanding. In 

general, the parameters obtained were consistent with expectation, because the neighbourhood 

rules were parameterised to generate shapes that were consistent with process knowledge. 

However, there were cases where rules were included (as discussed previously in Section 

3.4.3.1) that were not necessarily consistent with process knowledge, which could be addressed 

with additional manual intervention in the parameter elimination stage. Given the variation in 

the interaction elimination across the case studies, and the large number of parameters that 

were calibrated, the parameter analysis is focussed on the parameters that were included in 

each case study, the inertia points and self-influence tails. The final parameter values for each 

case study are presented in Supplementary Material 3E. 
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A comparison plot of the inertia point parameters obtained for the analysed solutions is 

presented in Figure 3.19, ordered by class and case study. As shown, for each case study the 

classes that exhibit the highest inertia tend to be the urban classes, residential, industry & 

commerce, and recreation areas, which is consistent with expectation, as such classes have 

high transition costs. The land-use class arable land, which essentially serves as a vacant class 

to facilitate transitions, exhibits the lowest inertia for each case, which is expected as such land-

uses tend to have the lowest transition costs. 

 

Figure 3.19. Comparison of inertia point influence values across classes for the case 

studies 

 

Figure 3.20 shows a comparison of the self-influence tail parameters (i.e. the influence of class 

i in the neighbourhood of class i) for the different solutions for each case study. The self-

influence tails exhibit behaviour that is also consistent with expectation. The urban classes 

exhibit a higher degree of self-influence across the different case studies, agricultural (pastures, 

permanent crops, agricultural areas) classes exhibit less self-influence, and the class arable 

land exhibits virtually no self-influence. A trend observed across the case studies is that the 

higher growth cases (Lisbon and Madrid) exhibit higher self-influence for the class residential 

than the low and moderate growth cases (Berlin and Budapest). This would be expected, as 

higher growth cases will have more newly allocated residential cells, which will require a 

stronger attraction to ensure they are allocated near the existing residential region. Hence, 
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based on the parameter evaluation, the calibration method was able to generate parameters that 

are consistent with expectation. 

Figure 3.20. Comparison of self-influence tail parameter values across classes for each 

case study.  

 

3.6 Summary and conclusions 

Transition potential LUCA models use neighbourhood rules to replicate the spatial dynamics 

that drive land-use changes in a region. Neighbourhood rules must be effectively calibrated for 

model application, as these are the main calibration parameters of such models due to their 

impact on parameter dimensionality. This paper presents a semi-automatic calibration method 

that integrates objective analysis with discursive input to facilitate efficient calibration of 

neighbourhood rules within a limited computational budget, achievable using a desktop PC. 

The method first reduces the complexity of the calibration problem and then calibrates the 

remaining neighbourhood rules in a computationally efficient manner, based on a set of metrics 

that quantify the two key aspects of LUCA model performance; locational agreement and 

landscape pattern structure. 

The utility of the proposed approach was demonstrated via application to four European case 

studies with varying physical characteristics and rates of growth. For each case study, the 

method was implemented with a focus on a certain objective, either locational agreement, 

landscape pattern structure, or a balance between the two. Based on a statistical analysis of the 

simulated output metrics compared with metrics obtained from two benchmark models, and 
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consideration of the simulated output maps and parameters, optimal performance required 

using a balanced objective preference. For this research, the best performance for the low 

growth case study (Berlin) was achieved when using a balanced approach between two 

objectives, Fuzzy Kappa and Area-Weighted Clumpiness Error. For the moderate (Budapest) 

and high (Lisbon and Madrid) growth cases, performance was maximised when using a 

balanced approach between three objectives, Fuzzy Kappa, Fuzzy Kappa Simulation and Area-

Weighted Clumpiness Error, suggesting that locational agreement is best quantified by 

balancing between the agreement of transitions and the agreement of the entire land-use map. 

This research demonstrates the efficiency that the integration of process knowledge affords 

process-specific calibration methods. The results suggest further improvements in efficiency 

and the quality of the final output could be achieved by utilising additional process knowledge, 

with the elimination or inclusion of certain neighbourhood rules, and the input of more complex 

neighbourhood rule shapes. The results also suggest potential improvement could be achieved 

by adjusting the calibration objectives. As discussed in Section 3.5.2, there tended to be over-

clustering of the resultant output for urban regions. Hence, a different aggregation strategy for 

combining the class level clumpiness errors may improve the results. Also, additional metrics 

could be used during the automatic calibration procedure that emphasize different pattern 

aspects, such as the fractal dimension or edge density (McGarigal, 2014), which were only 

captured by visual inspection for the case study application. The demonstrated application 

shows that the proposed approach is a step towards efficient LUCA model calibration with the 

potential to facilitate more widespread use of LUCA models to support scenario and policy 

analysis. 

The efficiency that is achieved with a process-specific method also has the potential to increase 

the efficiency of more computationally demanding approaches, such as optimisation. This 

would further reduce the computational demands of such approaches, as has been demonstrated 

with the use of meta-modelling by Şalap-Ayça et al. (2018). Integrating a process-specific 

method with optimisation would have the added benefit of integrating further process 

knowledge into such methods, potentially improving the applicability of the resulting models. 
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3.8 Supplementary material 

3.8.1 Supplementary material 3A: Derivation of empirical measures 

This section provides a detailed derivation of the empirical measures used in the interaction 

elimination and parameter categorisation and initialisation sections of the proposed approach. 

The link between data from the contingency table and the enrichment factor at distance zero is 

also shown. 

The generation of the contingency table requires an analysis of the state of each cell in two data 

maps: 

 𝑆𝑖,𝑗(𝑿̂0, 𝑿̂𝑎) = {𝑐 ∈ 𝐶: 𝑥̂𝑐,0 = 𝑖, 𝑥̂𝑐,𝑎 = 𝑗} (3A.1) 

where Si,j logs the state of the land-use class in the cell c of interest at the start and end of the 

calibration period. Populating the contingency table requires evaluating the state transition for 

each possible combination of land-use classes for the entire land-use map: 

 𝜂𝑖,𝑗 = |𝑆𝑖,𝑗| (3A.2) 

where ηi,j is the total numbers number of cells that are class i in 𝑿̂𝟎 and class j in 𝑿̂𝒂. The case 

where i does not equal j corresponds to a transition from i to j, and the case where i is equal to 

j (ηi,i) shows the total number of cells that did not change land-use class between 𝑿̂𝟎 and 𝑿̂𝒂. 

With these values determined the contingency table is populated such that: 

Table 3A.1. Example contingency table, populated by logging the land-use class in each cell 

between two maps 

  𝑿̂𝒂 

  A1 A2 ⋯ An 

𝑿̂𝟎 

A1 η1,1 η1,2 ⋯ η1,n 

A2 η2,1 η2,2 ⋯ η2,n 

⋮ ⋮ ⋮ ⋱ ⋮ 
An ηn,1 ηn,2 ⋯ ηn,n 

 

From the contingency table, the empirical measures inertia rate and conversion rate can be 

calculated. The inertia rate, which quantifies the tendency of a particular class to persist, is 

calculated by: 

 𝐼𝑅𝑖 = 
𝜂𝑖,𝑖

∑ 𝜂𝑖,𝑚
𝑛
𝑚=1

 (3A.3) 

The conversion rate, which quantifies the tendency of transitions to a particular class as a 

function of all transitions to that class, is calculated by: 
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 𝐶𝑅𝑖,𝑗 = 
𝜂𝑖,𝑗

(∑ 𝜂𝑚,𝑗
𝑛
𝑚=1 ) − 𝜂𝑖,𝑖

 (3A.4) 

 

To calculate the enrichment factor requires evaluating the composition of the neighbourhoods 

of cells that transitioned. The size of the neighbourhood is defined by a radius dMAX, the 

maximum allowable distance between two cells for inclusion in the neighbourhood. The 

neighbourhood is divided into a set of discrete unit-distance rings (i.e. distances of 1, 2, 3), 

based on the nearest unit-distance between the neighbourhood cell and the central cell. This is 

shown in Figure 3A.1 for a maximum cellular distance of three cells. Cells are allocated to the 

nearest unit-distance neighbourhood ring, so the neighbourhood of distance 0 comprises 1 cell 

at the location of the transition, distance 1 comprises a total of 8 cells at distances of 1 and 1.41 

cell lengths from the centre, the neighbourhood of distance 2 comprises a total of 12 cells at 

distances 2 and 2.24 cell lengths from the centre, and the neighbourhood of distance 3 

comprises a total of 8 cells at distances 2.83 and 3 cell lengths from the centre. 

Figure 3A.1. Example delineation of a neighbourhood of maximum distance three cell into 

a set of unit-distance rings for counting neighbourhood composition 

 

Following the subdivision of the neighbourhood into discrete unit-distance rings, the number 

of cells of each land-use class in each unit-distance ring in X0 is tallied: 

 𝑛𝑖,𝑗,𝑑 = |{𝑐 ∈ 𝐷𝑑(𝑐), 𝑥0,𝑐 = 𝑗}| (3A.5) 

where ni,j,d is the number of cells of land-use class j in the neighbourhood of distance d of a cell 

that transitioned to land-use class i, and Dd(c) is the set of cells in the neighbourhood of cell c 

at distance d. This tally of absolute neighbourhood representation of a land-use class at a certain 

distance from cells that transitioned to a certain land-use class is then converted to a relative 

representation, expressing the absolute representation as the percentage of the maximum 

number of possible cells in the neighbourhood (e.g. for distance one, 1 cell in the 
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neighbourhood is equivalent to a relative representation of 0.125, 2 cells in the neighbourhood 

is equivalent to a relative representation of 0.250). 

 𝑅𝑖,𝑗,𝑑 = 
𝑛𝑖,𝑗,𝑑

𝑛𝑑
 (3A.6) 

where Ri,j,d is the relative neighbourhood representation of the neighbourhood of distance d 

occupied by land-use j for cells that transitioned to land-use class i, and nd is the total number 

of cells in the neighbourhood of distance d. From this, the average relative representation is 

computed for each cell that transitioned to a particular class: 

 

𝑅̅𝑖,𝑗,𝑑 = 
1

|𝐶̃𝑖|
∑𝑅𝑖,𝑗,𝑑
𝑖∈𝐶̃𝑖

 (3A.7) 

where 𝑅̅i,j,d is the average relative representation of land-use class j in the neighbourhood at 

distance d of cells that transitioned to land-use class i, and 𝐶̃𝑖 is the set of cells that transitioned 

to land-use class i. The enrichment factor is then computed by: 

 

𝐸𝐹𝑖,𝑗,𝑑 = 𝑙𝑜𝑔10(
𝑅̅𝑖,𝑗,𝑑
𝑛𝑗
𝑛

) (3A.8) 

where EFi,j,d is the enrichment factor for the presence of land-use class j in the neighbourhood 

at a distance d of cells that transitioned to land-use class i, nj is the number of cells of the 

neighbourhood class j in the land-use map 𝑿̂𝟎 and n is the total number of cells in the land-use 

map. For ease of interpretation, enrichment factor values are log-scaled by a factor of ten, with 

negative values indicating under-representation, and positive values indicating over-

representation. 

It is possible to determine the enrichment factor value at distance 0 by using the contingency 

table. This is calculated by: 

 

𝐸𝐹𝑖,𝑗,0 = 

𝜂𝑗,𝑖
(∑ 𝜂𝑚,𝑖

𝑛
𝑚=1 ) − 𝜂𝑖,𝑖

𝑛𝑗
𝑁

 (3A.9) 

Hence, it is possible to derive the enrichment factor value at distance zero, which provides 

information about conversions, using the contingency table. However, this highlights why the 

conversion rate can be more effective at capturing the different conversions that are occurring 

in the data. For example, many conversions may be occurring from a certain class to another, 

but the enrichment factor may not suggest over-representation, indicating that a conversion 
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point is not required, because there is a large representation of the class in the landscape. A 

common example of this are conversions from large, relatively passive land-use classes such 

as natural vegetation, because they occupy a large area of the landscape, and facilitate many 

conversions to different classes, which are meaningful to include. 
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3.8.2 Supplementary material 3B: Functional dependency of parameter categorisation 

scheme 

This section details how the proposed meta-parameterisation and categorisation, detailed in 

Section 3.3.2, control the relative influence of the different interactions types, and the 

functional dependence of the neighbourhood potential of the normalised weighting parameters 

within each interaction type. 

The proposed approach introduces three meta-parameters (θCP, θST, θCT) that describe the inter-

type importance of each type of interaction 𝑃𝐶𝑃
′ , 𝑃𝑆𝑇

′ , and 𝑃𝐶𝑇
′  with respect to the inertia point 

interaction type 𝑃𝐼𝑃
′ , and a quantisation scheme that describes the intra-type importance within 

each interaction type. The impact of this parameter representation on the neighbourhood 

potential is given by: 

 𝑁𝑐,𝑖,𝑡 = 𝑁𝑐,𝑖,𝑡
𝐼𝑃 + 𝜃𝐶𝑃𝑁𝑐,𝑖,𝑡

𝐶𝑃 + 𝜃𝑆𝑇𝑁𝑐,𝑖,𝑡
𝑆𝑇 + 𝜃𝐶𝑇𝑁𝑐,𝑖,𝑡

𝐶𝑇  (3B.1) 

where 𝑁𝑐,𝑖,𝑡
𝑘  is the neighbourhood potential of interaction type k for cell c to support land-use 

type i at time t. Given the implemented parameterisation, the individual interaction-type terms 

can be defined as below. 

For the inertia points: 

 
𝑁𝑐,𝑖,𝑡
𝐼𝑃 = {

𝑤̃𝑖,𝑖,0 

0
 

If Xc,t = i 
(3B.2) 

Otherwise 

For the conversion points: 

 
𝑁𝑐,𝑖,𝑡
𝐶𝑃 = {

𝑤̃𝑖,𝑋𝑐,𝑡,0 

0
 

If Xc,t ≠ i 
(3B.3) 

Otherwise 

For the self-influence tails: 

 𝑁𝑐,𝑖,𝑡
𝑆𝑇 = ∑ 𝑤̃𝑖,𝑖,𝑑(𝑐,𝑐′)

𝑐′∈𝐷(𝑐)

𝑖,𝑋
𝑐′,𝑡

∈ 𝑃𝐼𝑇
′

 
(3B.4) 

For the cross-influence tails: 

 𝑁𝑐,𝑖,𝑡
𝐶𝑇 = ∑ 𝑤̃𝑖,𝑋

𝑐′,𝑡
,𝑑(𝑐,𝑐′)

𝑐′∈𝐷(𝑐)

𝑖,𝑋
𝑐′,𝑡

∈ 𝑃𝐶𝑇
′

 
(3B.5) 
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3.8.3 Supplementary material 3C: Contingency tables 

This section contains contingency tables for the data maps for all case studies for the calibration (1990-2000) and validation (2000-2006) 

periods. 

Table 3.C1. Berlin contingency table, 1990-2000 

  Map 2000 

 LUC NAT ARL PER PAS OAG RES I&C REC FOR R&R POR AIR M&D FRE MAR TOT 

M
ap

 1
9

9
0
 

NAT 2440 0 0 13 0 6 7 0 188 0 0 0 21 1 0 2676 

ARL 8 51812 148 1482 27 601 379 127 198 0 0 0 31 5 0 54818 

PER 0 1285 327 31 0 28 0 19 7 0 0 0 0 0 0 1697 

PAS 13 773 0 12937 32 23 5 3 39 0 0 0 0 18 0 13843 

OAG 0 45 0 151 1931 14 8 0 34 0 0 0 9 3 0 2195 

RES 4 4 0 3 0 17206 5 15 16 0 0 0 2 0 0 17255 

I&C 0 0 0 2 0 0 2033 0 0 0 0 0 0 0 0 2035 

REC 0 0 0 0 0 9 0 1572 0 0 0 0 0 0 0 1581 

FOR 111 8 0 4 9 58 30 0 58301 0 0 1 65 17 0 58604 

R&R 0 0 0 0 0 0 0 0 0 201 0 0 0 0 0 201 

POR 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 6 

AIR 12 0 0 0 0 0 0 0 4 0 0 559 0 0 0 575 

M&D 20 5 0 0 0 0 0 0 8 0 0 0 282 5 0 320 

FRE 5 0 0 0 0 0 0 0 0 0 0 0 0 4189 0 4194 

MAR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TOT 2613 53932 475 14623 1999 17945 2467 1736 58795 201 6 560 410 4238 0 160000 

 

  



116 

 

Table 3.C2. Berlin contingency table, 2000-2006 

  Map 2006 

 LUC NAT ARL PER PAS OAG RES I&C REC FOR R&R POR AIR M&D FRE MAR TOT 

M
ap

 2
0

0
0

 

NAT 2258 7 0 78 96 0 2 11 150 4 0 0 3 4 0 2613 

ARL 22 52786 40 440 267 127 40 98 58 12 0 5 32 5 0 53932 

PER 0 41 433 0 0 1 0 0 0 0 0 0 0 0 0 475 

PAS 17 270 0 14293 24 4 6 2 5 0 0 0 0 2 0 14623 

OAG 28 2 0 2 1943 0 3 6 0 5 3 0 7 0 0 1999 

RES 15 14 0 34 0 17732 102 25 0 8 1 0 14 0 0 17945 

I&C 19 15 0 7 0 39 2347 6 2 11 0 0 21 0 0 2467 

REC 0 0 0 0 0 19 0 1717 0 0 0 0 0 0 0 1736 

FOR 80 2 0 0 8 31 35 13 58594 8 0 3 20 1 0 58795 

R&R 0 0 0 0 0 21 8 0 0 172 0 0 0 0 0 201 

POR 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 6 

AIR 52 0 0 30 0 8 4 18 0 0 0 448 0 0 0 560 

M&D 5 1 0 10 12 5 21 9 7 0 0 0 338 2 0 410 

FRE 0 1 0 4 0 0 0 0 6 0 0 0 0 4227 0 4238 

MAR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TOT 2496 53139 473 14898 2350 17987 2568 1905 58822 220 10 456 435 4241 0 160000 
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Table 3.C3. Budapest contingency table, 1990-2000 

  Map 2000 

 LUC NAT ARL PER PAS OAG RES I&C REC FOR R&R POR AIR M&D FRE MAR TOT 

M
ap

 1
9

9
0

 

NAT 7226 31 0 37 0 5 0 0 2522 0 0 0 6 9 0 9836 

ARL 202 77735 329 1256 303 107 102 43 258 61 0 3 85 112 0 80596 

PER 60 356 3460 51 37 6 12 0 13 7 0 0 0 0 0 4002 

PAS 100 465 3 8265 21 25 22 7 17 0 0 0 2 6 0 8933 

OAG 55 36 6 73 9522 22 6 0 36 0 0 0 2 2 0 9760 

RES 6 4 0 16 0 13547 16 11 1 3 0 0 3 7 0 13614 

I&C 1 0 0 0 0 0 2213 1 0 1 0 0 1 0 0 2217 

REC 4 0 0 0 0 3 3 2242 2 0 0 0 0 0 0 2254 

FOR 1503 10 0 15 15 0 0 0 23426 5 0 0 4 5 0 24983 

R&R 0 0 0 0 0 0 0 0 0 271 0 0 0 0 0 271 

POR 0 0 0 0 0 0 0 0 0 0 58 0 0 0 0 58 

AIR 0 0 0 0 0 0 0 0 0 0 0 415 0 0 0 415 

M&D 6 0 0 14 1 0 0 0 0 0 0 0 189 0 0 210 

FRE 0 0 0 2 4 0 0 3 0 0 0 0 0 2842 0 2851 

MAR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TOT 9163 78637 3798 9729 9903 13715 2374 2307 26275 348 58 418 292 2983 0 160000 
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Table 3.C4. Budapest contingency table, 2000-2006 

  Map 2006 

 LUC NAT ARL PER PAS OAG RES I&C REC FOR R&R POR AIR M&D FRE MAR TOT 

M
ap

 2
0

0
0

 

NAT 7001 134 20 316 129 20 3 1 1488 0 0 0 10 41 0 9163 

ARL 351 76176 598 318 223 195 105 19 425 13 0 1 42 171 0 78637 

PER 11 220 3435 14 86 12 2 3 15 0 0 0 0 0 0 3798 

PAS 228 335 32 8825 86 51 54 35 61 0 4 0 8 10 0 9729 

OAG 96 1546 32 308 7221 362 80 81 166 0 0 0 1 10 0 9903 

RES 0 15 0 5 31 13609 44 3 3 3 0 0 0 2 0 13715 

I&C 0 23 0 15 0 25 2294 13 2 2 0 0 0 0 0 2374 

REC 1 5 0 0 0 89 8 2194 1 0 0 0 0 9 0 2307 

FOR 914 36 13 4 34 3 8 5 25251 0 0 0 0 7 0 26275 

R&R 0 1 0 0 3 0 12 0 0 332 0 0 0 0 0 348 

POR 0 0 0 0 0 0 7 0 0 0 51 0 0 0 0 58 

AIR 0 2 0 0 0 0 0 0 0 0 0 416 0 0 0 418 

M&D 0 9 0 13 0 9 2 6 0 0 0 0 236 17 0 292 

FRE 24 2 0 0 11 0 1 2 2 0 0 0 3 2938 0 2983 

MAR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TOT 8626 78504 4130 9818 7824 14375 2620 2362 27414 350 55 417 300 3205 0 160000 
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Table 3.C5. Lisbon contingency table, 1990-2000 

  Map 2000 

 LUC NAT ARL PER PAS OAG RES I&C REC FOR R&R POR AIR M&D FRE MAR TOT 

M
ap

 1
9

9
0

 

NAT 5884 111 43 1 99 232 97 83 2591 31 0 0 74 7 1 9254 

ARL 236 15304 88 186 154 259 105 0 263 9 0 7 19 11 0 16641 

PER 5 312 9558 0 32 34 20 8 17 0 0 0 8 0 0 9994 

PAS 14 1649 0 392 6 2 10 0 2 0 0 0 0 4 2 2081 

OAG 196 366 262 0 30873 1094 241 29 271 44 0 0 43 0 0 33419 

RES 0 0 0 0 0 5372 27 0 0 7 0 2 2 0 0 5410 

I&C 0 0 0 0 0 15 870 11 0 5 0 0 0 0 0 901 

REC 0 0 0 0 0 0 4 397 0 4 0 0 0 0 0 405 

FOR 3794 563 70 0 335 132 120 69 32769 24 0 0 65 5 5 37951 

R&R 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 21 

POR 0 0 0 0 0 0 0 8 0 0 103 0 0 0 0 111 

AIR 0 0 0 0 0 0 0 0 0 0 0 223 0 0 0 223 

M&D 20 0 4 0 1 2 4 0 2 0 0 0 251 0 0 284 

FRE 53 1 0 0 0 0 0 0 0 0 0 0 0 829 0 883 

MAR 2 0 0 0 0 2 16 4 0 0 10 0 0 0 42388 42422 

TOT 10204 18306 10025 579 31500 7144 1514 609 35915 145 113 232 462 856 42396 160000 
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Table 3.C6. Lisbon contingency table, 2000-2006 

  Map 2006 

 LUC NAT ARL PER PAS OAG RES I&C REC FOR R&R POR AIR M&D FRE MAR TOT 

M
ap

 2
0

0
0

 

NAT 6900 119 10 20 335 194 116 73 2327 30 0 0 53 25 2 10204 

ARL 212 16604 20 775 380 167 42 0 91 11 0 0 3 1 0 18306 

PER 33 111 9272 7 385 179 18 1 16 0 0 0 0 3 0 10025 

PAS 4 197 0 352 25 0 0 0 0 0 0 0 0 1 0 579 

OAG 374 216 71 6 28463 1560 97 39 629 23 0 0 17 0 5 31500 

RES 11 2 7 0 33 7006 42 25 7 8 0 0 2 0 1 7144 

I&C 19 0 4 1 17 17 1435 12 0 1 1 0 5 0 2 1514 

REC 0 0 1 0 1 11 8 579 0 0 0 9 0 0 0 609 

FOR 3660 83 18 0 256 87 33 72 31659 26 0 0 18 2 1 35915 

R&R 0 0 0 0 1 1 0 0 0 143 0 0 0 0 0 145 

POR 0 0 0 0 0 0 1 0 0 0 112 0 0 0 0 113 

AIR 0 0 0 0 0 2 0 0 0 0 0 230 0 0 0 232 

M&D 12 11 0 0 13 32 14 0 6 2 0 0 372 0 0 462 

FRE 0 4 0 0 0 0 0 0 0 0 0 0 0 852 0 856 

MAR 1 15 0 0 1 2 1 5 0 0 0 0 0 0 42371 42396 

TOT 11226 17362 9403 1161 29910 9258 1807 806 34735 244 113 239 470 884 42382 160000 
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Table 3.C7. Madrid contingency table, 1990-2000 

  Map 2000 

 LUC NAT ARL PER PAS OAG RES I&C REC FOR R&R POR AIR M&D FRE MAR TOT 

M
ap

 1
9

9
0

 

NAT 46821 268 3 0 50 1051 316 164 357 31 0 12 161 20 0 49254 

ARL 1540 55265 30 0 383 1492 1059 121 32 70 0 92 351 26 0 60461 

PER 50 18 4278 0 0 29 3 0 0 0 0 0 18 5 0 4401 

PAS 13 0 0 624 0 23 5 0 0 0 0 0 0 0 0 665 

OAG 191 34 15 0 20761 207 45 22 6 5 0 0 101 0 0 21387 

RES 1 4 0 0 6 7653 85 31 0 1 0 0 0 0 0 7781 

I&C 3 8 0 0 0 15 1152 5 0 0 0 0 0 0 0 1183 

REC 0 0 0 0 0 37 0 656 0 0 0 0 0 0 0 693 

FOR 55 16 0 0 8 21 0 11 12164 0 0 0 0 7 0 12282 

R&R 0 0 0 0 0 0 0 0 0 145 0 0 0 0 0 145 

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AIR 0 0 0 0 0 0 4 0 0 0 0 494 0 0 0 498 

M&D 33 6 0 0 0 29 26 39 0 0 0 0 368 2 0 503 

FRE 24 4 0 0 0 0 0 0 0 0 0 0 0 719 0 747 

MAR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TOT 48731 55623 4326 624 21208 10557 2695 1049 12559 252 0 598 999 779 0 160000 
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Table 3.C8. Madrid contingency table, 2000-2006 

  Map 2006 

 LUC NAT ARL PER PAS OAG RES I&C REC FOR R&R POR AIR M&D FRE MAR TOT 

M
ap

 2
0

0
0

 

NAT 47105 386 17 68 152 451 90 34 166 107 0 6 68 81 0 48731 

ARL 191 52871 35 0 249 865 442 50 5 518 0 186 202 9 0 55623 

PER 17 25 4149 0 45 38 5 0 2 11 0 0 10 24 0 4326 

PAS 13 0 0 586 0 17 0 0 2 4 0 0 0 2 0 624 

OAG 27 58 39 336 20499 109 43 11 17 30 0 0 39 0 0 21208 

RES 116 55 0 0 55 9931 136 86 21 62 0 90 2 3 0 10557 

I&C 16 23 0 0 0 287 2300 30 0 28 0 11 0 0 0 2695 

REC 19 4 0 0 4 47 13 953 1 1 0 0 7 0 0 1049 

FOR 143 4 0 0 16 37 3 6 12324 9 0 15 2 0 0 12559 

R&R 0 0 0 0 0 148 9 0 0 95 0 0 0 0 0 252 

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AIR 6 44 0 0 0 6 4 0 0 0 0 538 0 0 0 598 

M&D 88 78 0 11 25 71 71 41 0 11 0 13 590 0 0 999 

FRE 0 1 0 4 0 0 0 0 0 0 0 0 10 764 0 779 

MAR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TOT 47741 53549 4240 1005 21045 12007 3116 1211 12538 876 0 859 930 883 0 160000 
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3.8.4 Supplementary material 3D: Boxplots of simulated replicates 

This section contains boxplots to show the spread of the results for the different configurations 

of the proposed approach applied to the different case studies. 

Figure 3.D1. Boxplot of simulated replicates for different configurations for Berlin case 

study for calibration and validation periods 
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Figure 3.D2. Boxplot of simulated replicates for different configurations for Budapest 

case study for calibration and validation periods 
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Figure 3.D3. Boxplot of simulated replicates for different configurations for Lisbon case 

study for calibration and validation periods 
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Figure 3.D4. Boxplot of simulated replicates for different configurations for Madrid case 

study for calibration and validation periods 
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3.8.5 Supplementary material 3E: Final model parameterisations 

This section contains the final recommend values for the neighbourhood rules for each case 

study obtained at the conclusion of the application of the calibration method. 

Table 3.E1. Final neighbourhood rule parameter values, Berlin 

  Distance 

  0 1 2 5 

From To Influence 

Natural areas Arable land 0.00 0.00 0.00 0.00 

Natural areas Permanent crops 0.00 0.00 0.00 0.00 

Natural areas Pastures 0.00 0.00 0.00 0.00 

Natural areas Agricultural areas 0.00 0.00 0.00 0.00 

Natural areas Residential 0.00 0.00 0.00 0.00 

Natural areas Industry & commerce 0.00 0.00 0.00 0.00 

Natural areas Recreation areas 0.00 0.00 0.00 0.00 

Natural areas Forest 7.20 5.57 0.56 0.00 

Arable land Arable land 404.99 2.94 0.29 0.00 

Arable land Permanent crops 51.97 2.94 0.29 0.00 

Arable land Pastures 45.08 1.32 0.13 0.00 

Arable land Agricultural areas 66.56 6.39 0.64 0.00 

Arable land Residential 26.55 1.50 0.15 0.00 

Arable land Industry & commerce 62.11 9.33 0.93 0.00 

Arable land Recreation areas 69.50 1.82 0.18 0.00 

Arable land Forest 25.00 0.00 0.00 0.00 

Permanent crops Arable land 70.32 0.81 0.08 0.00 

Permanent crops Permanent crops 317.63 35.57 3.56 0.00 

Permanent crops Pastures 0.00 15.91 1.59 0.00 

Permanent crops Agricultural areas 0.00 0.00 0.00 0.00 

Permanent crops Residential 94.43 23.92 2.39 0.00 

Permanent crops Industry & commerce 0.00 0.00 0.00 0.00 

Permanent crops Recreation areas 25.23 3.00 0.30 0.00 

Permanent crops Forest 0.00 0.00 0.00 0.00 

Pastures Arable land 25.00 1.32 0.13 0.00 

Pastures Permanent crops 0.00 0.00 0.00 0.00 

Pastures Pastures 500.00 38.20 3.82 0.00 

Pastures Agricultural areas 25.00 3.00 0.30 0.00 

Pastures Residential 12.50 0.00 0.00 0.00 

Pastures Industry & commerce 0.00 0.00 0.00 0.00 

Pastures Recreation areas 0.00 0.00 0.00 0.00 

Pastures Forest 99.50 0.00 0.00 0.00 

Agricultural areas Arable land 0.00 6.39 0.64 0.00 

Agricultural areas Permanent crops 0.00 1.50 0.15 0.00 

Agricultural areas Pastures 11.65 3.00 0.30 0.00 

Agricultural areas Agricultural areas 443.02 10.64 1.06 0.00 

Agricultural areas Residential 0.00 16.22 1.62 0.00 

Agricultural areas Industry & commerce 0.00 1.50 0.15 0.00 

Agricultural areas Recreation areas 0.00 0.00 0.00 0.00 

Agricultural areas Forest 99.50 4.26 0.43 0.00 

Residential Arable land 0.00 0.00 0.00 0.00 

Residential Permanent crops 0.00 0.00 0.00 0.00 

Residential Pastures 0.00 0.00 0.00 0.00 

Residential Agricultural areas 0.00 0.00 0.00 0.00 
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Residential Residential 1000.00 17.22 1.72 0.00 

Residential Industry & commerce 0.00 0.00 0.00 0.00 

Residential Recreation areas 12.50 0.00 0.00 0.00 

Residential Forest 12.50 0.00 0.00 0.00 

Industry & commerce Arable land 0.00 0.00 0.00 0.00 

Industry & commerce Permanent crops 0.00 0.00 0.00 0.00 

Industry & commerce Pastures 0.00 0.00 0.00 0.00 

Industry & commerce Agricultural areas 0.00 0.00 0.00 0.00 

Industry & commerce Residential 0.00 0.00 0.00 0.00 

Industry & commerce Industry & commerce 1000.00 84.91 8.49 0.00 

Industry & commerce Recreation areas 0.00 0.00 0.00 0.00 

Industry & commerce Forest 0.00 0.00 0.00 0.00 

Recreation areas Arable land 0.00 0.00 0.00 0.00 

Recreation areas Permanent crops 0.00 0.00 0.00 0.00 

Recreation areas Pastures 0.00 0.00 0.00 0.00 

Recreation areas Agricultural areas 0.00 0.00 0.00 0.00 

Recreation areas Residential 0.00 38.20 3.82 0.00 

Recreation areas Industry & commerce 0.00 0.00 0.00 0.00 

Recreation areas Recreation areas 1000.00 84.60 8.46 0.00 

Recreation areas Forest 0.00 0.00 0.00 0.00 

Forest Arable land 0.00 0.00 0.00 0.00 

Forest Permanent crops 0.00 0.00 0.00 0.00 

Forest Pastures 0.00 0.00 0.00 0.00 

Forest Agricultural areas 25.00 0.00 0.00 0.00 

Forest Residential 12.50 0.00 0.00 0.00 

Forest Industry & commerce 12.50 0.00 0.00 0.00 

Forest Recreation areas 0.00 0.00 0.00 0.00 

Forest Forest 996.23 9.83 0.98 0.00 

Road & rail Arable land 0.00 0.00 0.00 0.00 

Road & rail Permanent crops 0.00 0.00 0.00 0.00 

Road & rail Pastures 0.00 0.00 0.00 0.00 

Road & rail Agricultural areas 0.00 0.00 0.00 0.00 

Road & rail Residential 0.00 0.00 0.00 0.00 

Road & rail Industry & commerce 0.00 0.00 0.00 0.00 

Road & rail Recreation areas 0.00 0.00 0.00 0.00 

Road & rail Forest 0.00 0.00 0.00 0.00 

Port area Arable land 0.00 0.00 0.00 0.00 

Port area Permanent crops 0.00 0.00 0.00 0.00 

Port area Pastures 0.00 0.00 0.00 0.00 

Port area Agricultural areas 0.00 0.00 0.00 0.00 

Port area Residential 0.00 0.00 0.00 0.00 

Port area Industry & commerce 0.00 0.00 0.00 0.00 

Port area Recreation areas 0.00 0.00 0.00 0.00 

Port area Forest 0.00 0.00 0.00 0.00 

Airports Arable land 0.00 0.00 0.00 0.00 

Airports Permanent crops 0.00 27.86 2.79 0.00 

Airports Pastures 0.00 0.00 0.00 0.00 

Airports Agricultural areas 0.00 0.00 0.00 0.00 

Airports Residential 0.00 0.00 0.00 0.00 

Airports Industry & commerce 0.00 25.74 2.57 0.00 

Airports Recreation areas 0.00 0.00 0.00 0.00 

Airports Forest 0.00 0.00 0.00 0.00 

Mine & dump sites Arable land 0.00 0.00 0.00 0.00 

Mine & dump sites Permanent crops 0.00 0.00 0.00 0.00 

Mine & dump sites Pastures 0.00 0.00 0.00 0.00 
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Mine & dump sites Agricultural areas 0.00 0.00 0.00 0.00 

Mine & dump sites Residential 0.00 0.00 0.00 0.00 

Mine & dump sites Industry & commerce 0.00 0.00 0.00 0.00 

Mine & dump sites Recreation areas 0.00 0.00 0.00 0.00 

Mine & dump sites Forest 0.00 33.44 3.34 0.00 

Fresh water Arable land 0.00 0.00 0.00 0.00 

Fresh water Permanent crops 0.00 0.00 0.00 0.00 

Fresh water Pastures 0.00 0.00 0.00 0.00 

Fresh water Agricultural areas 0.00 9.83 0.98 0.00 

Fresh water Residential 0.00 0.00 0.00 0.00 

Fresh water Industry & commerce 0.00 0.00 0.00 0.00 

Fresh water Recreation areas 0.00 0.00 0.00 0.00 

Fresh water Forest 0.00 0.00 0.00 0.00 

Marine water Arable land 0.00 0.00 0.00 0.00 

Marine water Permanent crops 0.00 0.00 0.00 0.00 

Marine water Pastures 0.00 0.00 0.00 0.00 

Marine water Agricultural areas 0.00 0.00 0.00 0.00 

Marine water Residential 0.00 0.00 0.00 0.00 

Marine water Industry & commerce 0.00 0.00 0.00 0.00 

Marine water Recreation areas 0.00 0.00 0.00 0.00 

Marine water Forest 0.00 0.00 0.00 0.00 
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Table 3.E2. Final neighbourhood rule parameter values, Budapest 

  Distance 

  0 1 2 5 

From To Influence 

Natural areas Arable land 8.13 0.00 0.00 0.00 

Natural areas Permanent crops 0.00 0.00 0.00 0.00 

Natural areas Pastures 8.13 0.00 0.00 0.00 

Natural areas Agricultural areas 0.00 0.00 0.00 0.00 

Natural areas Residential 8.13 0.00 0.00 0.00 

Natural areas Industry & commerce 0.00 0.00 0.00 0.00 

Natural areas Recreation areas 0.00 0.00 0.00 0.00 

Natural areas Forest 32.50 3.00 0.30 0.00 

Arable land Arable land 250.00 5.00 0.50 0.00 

Arable land Permanent crops 32.50 1.50 0.15 0.00 

Arable land Pastures 32.50 1.50 0.15 0.00 

Arable land Agricultural areas 32.50 0.00 0.00 0.00 

Arable land Residential 32.50 0.00 0.00 0.00 

Arable land Industry & commerce 32.50 0.00 0.00 0.00 

Arable land Recreation areas 32.50 0.00 0.00 0.00 

Arable land Forest 8.13 0.00 0.00 0.00 

Permanent crops Arable land 16.25 6.00 0.60 0.00 

Permanent crops Permanent crops 800.89 10.00 1.00 0.00 

Permanent crops Pastures 8.13 1.50 0.15 0.00 

Permanent crops Agricultural areas 8.13 1.50 0.15 0.00 

Permanent crops Residential 8.13 0.00 0.00 0.00 

Permanent crops Industry & commerce 8.13 1.50 0.15 0.00 

Permanent crops Recreation areas 0.00 0.00 0.00 0.00 

Permanent crops Forest 0.00 0.00 0.00 0.00 

Pastures Arable land 32.50 3.00 0.30 0.00 

Pastures Permanent crops 0.00 0.00 0.00 0.00 

Pastures Pastures 500.00 5.00 0.50 0.00 

Pastures Agricultural areas 8.13 0.00 0.00 0.00 

Pastures Residential 16.25 0.00 0.00 0.00 

Pastures Industry & commerce 16.25 0.00 0.00 0.00 

Pastures Recreation areas 16.25 0.00 0.00 0.00 

Pastures Forest 0.00 0.00 0.00 0.00 

Agricultural areas Arable land 8.13 0.00 0.00 0.00 

Agricultural areas Permanent crops 0.00 1.50 0.15 0.00 

Agricultural areas Pastures 8.13 0.00 0.00 0.00 

Agricultural areas Agricultural areas 1000.00 42.45 4.25 0.00 

Agricultural areas Residential 16.25 1.50 0.15 0.00 

Agricultural areas Industry & commerce 8.13 0.00 0.00 0.00 

Agricultural areas Recreation areas 0.00 0.00 0.00 0.00 

Agricultural areas Forest 0.00 0.00 0.00 0.00 

Residential Arable land 0.00 0.00 0.00 0.00 

Residential Permanent crops 0.00 0.00 0.00 0.00 

Residential Pastures 0.00 0.00 0.00 0.00 

Residential Agricultural areas 0.00 0.00 0.00 0.00 

Residential Residential 1000.00 19.35 1.93 0.00 

Residential Industry & commerce 8.13 1.50 0.15 0.00 

Residential Recreation areas 16.25 1.50 0.15 0.00 

Residential Forest 0.00 0.00 0.00 0.00 

Industry & commerce Arable land 0.00 0.00 0.00 0.00 

Industry & commerce Permanent crops 0.00 0.00 0.00 0.00 
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Industry & commerce Pastures 0.00 0.00 0.00 0.00 

Industry & commerce Agricultural areas 0.00 0.00 0.00 0.00 

Industry & commerce Residential 0.00 0.00 0.00 0.00 

Industry & commerce Industry & commerce 1000.00 46.71 4.67 0.00 

Industry & commerce Recreation areas 0.00 1.50 0.15 0.00 

Industry & commerce Forest 0.00 0.00 0.00 0.00 

Recreation areas Arable land 0.00 0.00 0.00 0.00 

Recreation areas Permanent crops 0.00 0.00 0.00 0.00 

Recreation areas Pastures 0.00 1.50 0.15 0.00 

Recreation areas Agricultural areas 0.00 0.00 0.00 0.00 

Recreation areas Residential 0.00 1.50 0.15 0.00 

Recreation areas Industry & commerce 0.00 1.50 0.15 0.00 

Recreation areas Recreation areas 1000.00 43.27 4.33 0.00 

Recreation areas Forest 0.00 0.00 0.00 0.00 

Forest Arable land 0.00 0.00 0.00 0.00 

Forest Permanent crops 0.00 0.00 0.00 0.00 

Forest Pastures 0.00 0.00 0.00 0.00 

Forest Agricultural areas 8.13 0.00 0.00 0.00 

Forest Residential 0.00 0.00 0.00 0.00 

Forest Industry & commerce 0.00 0.00 0.00 0.00 

Forest Recreation areas 0.00 0.00 0.00 0.00 

Forest Forest 500.00 10.33 1.03 0.00 

Road & rail Arable land 0.00 0.00 0.00 0.00 

Road & rail Permanent crops 0.00 0.00 0.00 0.00 

Road & rail Pastures 0.00 0.00 0.00 0.00 

Road & rail Agricultural areas 0.00 0.00 0.00 0.00 

Road & rail Residential 0.00 0.00 0.00 0.00 

Road & rail Industry & commerce 0.00 0.00 0.00 0.00 

Road & rail Recreation areas 0.00 0.00 0.00 0.00 

Road & rail Forest 0.00 0.00 0.00 0.00 

Port area Arable land 0.00 0.00 0.00 0.00 

Port area Permanent crops 0.00 0.00 0.00 0.00 

Port area Pastures 0.00 0.00 0.00 0.00 

Port area Agricultural areas 0.00 0.00 0.00 0.00 

Port area Residential 0.00 0.00 0.00 0.00 

Port area Industry & commerce 0.00 0.00 0.00 0.00 

Port area Recreation areas 0.00 0.00 0.00 0.00 

Port area Forest 0.00 0.00 0.00 0.00 

Airports Arable land 0.00 0.00 0.00 0.00 

Airports Permanent crops 0.00 0.00 0.00 0.00 

Airports Pastures 0.00 0.00 0.00 0.00 

Airports Agricultural areas 0.00 0.00 0.00 0.00 

Airports Residential 0.00 0.00 0.00 0.00 

Airports Industry & commerce 0.00 0.00 0.00 0.00 

Airports Recreation areas 0.00 0.00 0.00 0.00 

Airports Forest 0.00 0.00 0.00 0.00 

Mine & dump sites Arable land 0.00 0.00 0.00 0.00 

Mine & dump sites Permanent crops 0.00 1.50 0.15 0.00 

Mine & dump sites Pastures 0.00 3.00 0.30 0.00 

Mine & dump sites Agricultural areas 0.00 0.00 0.00 0.00 

Mine & dump sites Residential 0.00 0.00 0.00 0.00 

Mine & dump sites Industry & commerce 0.00 0.00 0.00 0.00 

Mine & dump sites Recreation areas 0.00 0.00 0.00 0.00 

Mine & dump sites Forest 0.00 0.00 0.00 0.00 

Fresh water Arable land 0.00 0.00 0.00 0.00 
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Fresh water Permanent crops 0.00 0.00 0.00 0.00 

Fresh water Pastures 0.00 0.00 0.00 0.00 

Fresh water Agricultural areas 0.00 1.50 0.15 0.00 

Fresh water Residential 0.00 0.00 0.00 0.00 

Fresh water Industry & commerce 0.00 0.00 0.00 0.00 

Fresh water Recreation areas 8.13 3.00 0.30 0.00 

Fresh water Forest 0.00 0.00 0.00 0.00 

Marine water Arable land 0.00 0.00 0.00 0.00 

Marine water Permanent crops 0.00 0.00 0.00 0.00 

Marine water Pastures 0.00 0.00 0.00 0.00 

Marine water Agricultural areas 0.00 0.00 0.00 0.00 

Marine water Residential 0.00 0.00 0.00 0.00 

Marine water Industry & commerce 0.00 0.00 0.00 0.00 

Marine water Recreation areas 0.00 0.00 0.00 0.00 

Marine water Forest 0.00 0.00 0.00 0.00 
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Table 3.E3. Final neighbourhood rule parameter values, Lisbon 

  Distance 

  0 1 2 5 

From To Influence 

Natural areas Arable land 8.51 0.00 0.00 0.00 

Natural areas Permanent crops 10.00 1.00 0.10 0.00 

Natural areas Pastures 0.00 0.00 0.00 0.00 

Natural areas Agricultural areas 20.00 1.00 0.10 0.00 

Natural areas Residential 28.68 9.33 0.93 0.00 

Natural areas Industry & commerce 18.34 1.00 0.10 0.00 

Natural areas Recreation areas 20.00 2.00 0.20 0.00 

Natural areas Forest 39.51 4.00 0.40 0.00 

Arable land Arable land 500.00 3.75 0.38 0.00 

Arable land Permanent crops 20.00 1.00 0.10 0.00 

Arable land Pastures 40.00 2.00 0.20 0.00 

Arable land Agricultural areas 20.00 1.00 0.10 0.00 

Arable land Residential 36.38 0.00 0.00 0.00 

Arable land Industry & commerce 26.55 1.63 0.16 0.00 

Arable land Recreation areas 0.00 0.00 0.00 0.00 

Arable land Forest 10.00 0.00 0.00 0.00 

Permanent crops Arable land 20.00 1.00 0.10 0.00 

Permanent crops Permanent crops 1000.00 6.25 0.63 0.00 

Permanent crops Pastures 0.00 0.00 0.00 0.00 

Permanent crops Agricultural areas 10.00 0.00 0.00 0.00 

Permanent crops Residential 0.00 0.00 0.00 0.00 

Permanent crops Industry & commerce 99.50 0.00 0.00 0.00 

Permanent crops Recreation areas 10.00 0.00 0.00 0.00 

Permanent crops Forest 0.00 0.00 0.00 0.00 

Pastures Arable land 38.20 4.00 0.40 0.00 

Pastures Permanent crops 0.00 0.00 0.00 0.00 

Pastures Pastures 851.11 1.32 0.13 0.00 

Pastures Agricultural areas 0.00 0.00 0.00 0.00 

Pastures Residential 0.00 0.00 0.00 0.00 

Pastures Industry & commerce 0.00 0.00 0.00 0.00 

Pastures Recreation areas 0.00 0.00 0.00 0.00 

Pastures Forest 0.00 0.00 0.00 0.00 

Agricultural areas Arable land 14.59 0.00 0.00 0.00 

Agricultural areas Permanent crops 40.00 1.00 0.10 0.00 

Agricultural areas Pastures 0.00 0.00 0.00 0.00 

Agricultural areas Agricultural areas 275.83 0.50 0.05 0.00 

Agricultural areas Residential 47.21 27.86 2.79 0.00 

Agricultural areas Industry & commerce 58.86 3.75 0.38 0.00 

Agricultural areas Recreation areas 20.00 0.00 0.00 0.00 

Agricultural areas Forest 10.00 0.00 0.00 0.00 

Residential Arable land 0.00 0.00 0.00 0.00 

Residential Permanent crops 0.00 0.00 0.00 0.00 

Residential Pastures 0.00 0.00 0.00 0.00 

Residential Agricultural areas 0.00 1.00 0.10 0.00 

Residential Residential 1000.00 62.31 6.23 0.00 

Residential Industry & commerce 10.00 27.05 2.71 0.00 

Residential Recreation areas 0.00 1.00 0.10 0.00 

Residential Forest 0.00 0.00 0.00 0.00 

Industry & commerce Arable land 0.00 0.00 0.00 0.00 

Industry & commerce Permanent crops 0.00 0.00 0.00 0.00 
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Industry & commerce Pastures 0.00 0.00 0.00 0.00 

Industry & commerce Agricultural areas 0.00 0.00 0.00 0.00 

Industry & commerce Residential 0.00 83.28 8.33 0.00 

Industry & commerce Industry & commerce 1000.00 85.41 8.54 0.00 

Industry & commerce Recreation areas 10.00 2.00 0.20 0.00 

Industry & commerce Forest 0.00 0.00 0.00 0.00 

Recreation areas Arable land 0.00 0.00 0.00 0.00 

Recreation areas Permanent crops 0.00 0.00 0.00 0.00 

Recreation areas Pastures 0.00 0.00 0.00 0.00 

Recreation areas Agricultural areas 0.00 0.00 0.00 0.00 

Recreation areas Residential 0.00 40.33 4.03 0.00 

Recreation areas Industry & commerce 0.00 38.20 3.82 0.00 

Recreation areas Recreation areas 1000.00 85.41 8.54 0.00 

Recreation areas Forest 0.00 0.00 0.00 0.00 

Forest Arable land 23.10 0.00 0.00 0.00 

Forest Permanent crops 61.80 0.00 0.00 0.00 

Forest Pastures 0.00 0.00 0.00 0.00 

Forest Agricultural areas 98.68 1.00 0.10 0.00 

Forest Residential 43.27 0.00 0.00 0.00 

Forest Industry & commerce 20.00 0.00 0.00 0.00 

Forest Recreation areas 61.30 6.89 0.69 0.00 

Forest Forest 250.00 7.20 0.72 0.00 

Road & rail Arable land 0.00 0.00 0.00 0.00 

Road & rail Permanent crops 0.00 0.00 0.00 0.00 

Road & rail Pastures 0.00 0.00 0.00 0.00 

Road & rail Agricultural areas 0.00 0.00 0.00 0.00 

Road & rail Residential 0.00 72.95 7.29 0.00 

Road & rail Industry & commerce 0.00 0.00 0.00 0.00 

Road & rail Recreation areas 0.00 2.00 0.20 0.00 

Road & rail Forest 0.00 0.00 0.00 0.00 

Port area Arable land 0.00 0.00 0.00 0.00 

Port area Permanent crops 0.00 0.00 0.00 0.00 

Port area Pastures 0.00 0.00 0.00 0.00 

Port area Agricultural areas 0.00 0.00 0.00 0.00 

Port area Residential 0.00 0.00 0.00 0.00 

Port area Industry & commerce 0.00 0.00 0.00 0.00 

Port area Recreation areas 10.00 76.39 7.64 0.00 

Port area Forest 0.00 0.00 0.00 0.00 

Airports Arable land 0.00 0.00 0.00 0.00 

Airports Permanent crops 0.00 0.00 0.00 0.00 

Airports Pastures 0.00 0.00 0.00 0.00 

Airports Agricultural areas 0.00 0.00 0.00 0.00 

Airports Residential 0.00 0.00 0.00 0.00 

Airports Industry & commerce 0.00 0.00 0.00 0.00 

Airports Recreation areas 0.00 0.00 0.00 0.00 

Airports Forest 0.00 0.00 0.00 0.00 

Mine & dump sites Arable land 0.00 0.00 0.00 0.00 

Mine & dump sites Permanent crops 0.00 0.00 0.00 0.00 

Mine & dump sites Pastures 0.00 0.00 0.00 0.00 

Mine & dump sites Agricultural areas 0.00 18.85 1.88 0.00 

Mine & dump sites Residential 0.00 1.00 0.10 0.00 

Mine & dump sites Industry & commerce 0.00 1.00 0.10 0.00 

Mine & dump sites Recreation areas 0.00 2.00 0.20 0.00 

Mine & dump sites Forest 0.00 0.00 0.00 0.00 

Fresh water Arable land 0.00 0.00 0.00 0.00 
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Fresh water Permanent crops 0.00 0.00 0.00 0.00 

Fresh water Pastures 0.00 80.15 8.01 0.00 

Fresh water Agricultural areas 0.00 0.00 0.00 0.00 

Fresh water Residential 0.00 0.00 0.00 0.00 

Fresh water Industry & commerce 0.00 0.00 0.00 0.00 

Fresh water Recreation areas 0.00 0.00 0.00 0.00 

Fresh water Forest 0.00 0.00 0.00 0.00 

Marine water Arable land 0.00 0.00 0.00 0.00 

Marine water Permanent crops 0.00 0.00 0.00 0.00 

Marine water Pastures 0.00 0.00 0.00 0.00 

Marine water Agricultural areas 0.00 0.00 0.00 0.00 

Marine water Residential 0.00 0.00 0.00 0.00 

Marine water Industry & commerce 0.00 0.00 0.00 0.00 

Marine water Recreation areas 0.00 0.00 0.00 0.00 

Marine water Forest 0.00 0.00 0.00 0.00 
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Table 3.E4. Final neighbourhood rule parameter values, Madrid 

  Distance 

  0 1 2 5 

From To Influence 

Natural areas Arable land 15.40 2.75 0.28 0.00 

Natural areas Permanent crops 60.49 0.00 0.00 0.00 

Natural areas Pastures 0.00 0.00 0.00 0.00 

Natural areas Agricultural areas 20.00 0.00 0.00 0.00 

Natural areas Residential 20.00 0.00 0.00 0.00 

Natural areas Industry & commerce 32.12 0.00 0.00 0.00 

Natural areas Recreation areas 19.85 2.75 0.28 0.00 

Natural areas Forest 33.13 2.13 0.21 0.00 

Arable land Arable land 250.00 7.70 0.77 0.00 

Arable land Permanent crops 40.00 2.75 0.28 0.00 

Arable land Pastures 0.00 0.00 0.00 0.00 

Arable land Agricultural areas 28.37 2.75 0.28 0.00 

Arable land Residential 52.48 2.75 0.28 0.00 

Arable land Industry & commerce 69.50 2.13 0.21 0.00 

Arable land Recreation areas 38.70 0.00 0.00 0.00 

Arable land Forest 81.46 0.00 0.00 0.00 

Permanent crops Arable land 10.00 0.00 0.00 0.00 

Permanent crops Permanent crops 572.17 21.48 2.15 0.00 

Permanent crops Pastures 0.00 0.00 0.00 0.00 

Permanent crops Agricultural areas 0.00 0.00 0.00 0.00 

Permanent crops Residential 0.00 0.00 0.00 0.00 

Permanent crops Industry & commerce 0.00 0.00 0.00 0.00 

Permanent crops Recreation areas 0.00 0.00 0.00 0.00 

Permanent crops Forest 0.00 0.00 0.00 0.00 

Pastures Arable land 0.00 0.00 0.00 0.00 

Pastures Permanent crops 0.00 0.00 0.00 0.00 

Pastures Pastures 735.59 10.00 1.00 0.00 

Pastures Agricultural areas 0.00 0.00 0.00 0.00 

Pastures Residential 0.00 2.75 0.28 0.00 

Pastures Industry & commerce 0.00 0.00 0.00 0.00 

Pastures Recreation areas 0.00 0.00 0.00 0.00 

Pastures Forest 0.00 0.00 0.00 0.00 

Agricultural areas Arable land 10.00 0.00 0.00 0.00 

Agricultural areas Permanent crops 20.00 8.51 0.85 0.00 

Agricultural areas Pastures 0.00 0.00 0.00 0.00 

Agricultural areas Agricultural areas 353.33 9.33 0.93 0.00 

Agricultural areas Residential 42.96 0.00 0.00 0.00 

Agricultural areas Industry & commerce 52.28 0.00 0.00 0.00 

Agricultural areas Recreation areas 63.12 0.00 0.00 0.00 

Agricultural areas Forest 0.00 0.00 0.00 0.00 

Residential Arable land 0.00 0.00 0.00 0.00 

Residential Permanent crops 0.00 0.00 0.00 0.00 

Residential Pastures 0.00 0.00 0.00 0.00 

Residential Agricultural areas 0.00 0.00 0.00 0.00 

Residential Residential 1000.00 61.30 6.13 0.00 

Residential Industry & commerce 10.00 35.57 3.56 0.00 

Residential Recreation areas 10.00 2.75 0.28 0.00 

Residential Forest 0.00 0.00 0.00 0.00 

Industry & commerce Arable land 0.00 2.75 0.28 0.00 

Industry & commerce Permanent crops 0.00 0.00 0.00 0.00 
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Industry & commerce Pastures 0.00 0.00 0.00 0.00 

Industry & commerce Agricultural areas 0.00 0.00 0.00 0.00 

Industry & commerce Residential 0.00 3.44 0.34 0.00 

Industry & commerce Industry & commerce 1000.00 55.73 5.57 0.00 

Industry & commerce Recreation areas 0.00 10.33 1.03 0.00 

Industry & commerce Forest 0.00 0.00 0.00 0.00 

Recreation areas Arable land 0.00 0.00 0.00 0.00 

Recreation areas Permanent crops 0.00 0.00 0.00 0.00 

Recreation areas Pastures 0.00 0.00 0.00 0.00 

Recreation areas Agricultural areas 0.00 0.00 0.00 0.00 

Recreation areas Residential 0.00 5.57 0.56 0.00 

Recreation areas Industry & commerce 0.00 0.00 0.00 0.00 

Recreation areas Recreation areas 500.00 20.16 2.02 0.00 

Recreation areas Forest 0.00 0.00 0.00 0.00 

Forest Arable land 10.00 0.00 0.00 0.00 

Forest Permanent crops 0.00 0.00 0.00 0.00 

Forest Pastures 0.00 0.00 0.00 0.00 

Forest Agricultural areas 0.00 0.00 0.00 0.00 

Forest Residential 0.00 0.00 0.00 0.00 

Forest Industry & commerce 0.00 0.00 0.00 0.00 

Forest Recreation areas 10.00 0.00 0.00 0.00 

Forest Forest 1000.00 5.57 0.56 0.00 

Road & rail Arable land 0.00 0.00 0.00 0.00 

Road & rail Permanent crops 0.00 0.00 0.00 0.00 

Road & rail Pastures 0.00 0.00 0.00 0.00 

Road & rail Agricultural areas 0.00 0.00 0.00 0.00 

Road & rail Residential 0.00 0.00 0.00 0.00 

Road & rail Industry & commerce 0.00 68.19 6.82 0.00 

Road & rail Recreation areas 0.00 0.00 0.00 0.00 

Road & rail Forest 0.00 0.00 0.00 0.00 

Port area Arable land 0.00 0.00 0.00 0.00 

Port area Permanent crops 0.00 0.00 0.00 0.00 

Port area Pastures 0.00 0.00 0.00 0.00 

Port area Agricultural areas 0.00 0.00 0.00 0.00 

Port area Residential 0.00 0.00 0.00 0.00 

Port area Industry & commerce 0.00 0.00 0.00 0.00 

Port area Recreation areas 0.00 0.00 0.00 0.00 

Port area Forest 0.00 0.00 0.00 0.00 

Airports Arable land 0.00 0.00 0.00 0.00 

Airports Permanent crops 0.00 0.00 0.00 0.00 

Airports Pastures 0.00 0.00 0.00 0.00 

Airports Agricultural areas 0.00 0.00 0.00 0.00 

Airports Residential 0.00 0.00 0.00 0.00 

Airports Industry & commerce 0.00 19.35 1.93 0.00 

Airports Recreation areas 0.00 0.00 0.00 0.00 

Airports Forest 0.00 0.00 0.00 0.00 

Mine & dump sites Arable land 0.00 0.00 0.00 0.00 

Mine & dump sites Permanent crops 0.00 31.31 3.13 0.00 

Mine & dump sites Pastures 0.00 0.00 0.00 0.00 

Mine & dump sites Agricultural areas 0.00 0.00 0.00 0.00 

Mine & dump sites Residential 0.00 51.47 5.15 0.00 

Mine & dump sites Industry & commerce 0.00 11.15 1.11 0.00 

Mine & dump sites Recreation areas 10.00 11.15 1.11 0.00 

Mine & dump sites Forest 0.00 0.00 0.00 0.00 

Fresh water Arable land 0.00 0.00 0.00 0.00 
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Fresh water Permanent crops 0.00 0.00 0.00 0.00 

Fresh water Pastures 0.00 0.00 0.00 0.00 

Fresh water Agricultural areas 0.00 0.00 0.00 0.00 

Fresh water Residential 0.00 0.00 0.00 0.00 

Fresh water Industry & commerce 0.00 0.00 0.00 0.00 

Fresh water Recreation areas 0.00 0.00 0.00 0.00 

Fresh water Forest 0.00 0.00 0.00 0.00 

Marine water Arable land 0.00 0.00 0.00 0.00 

Marine water Permanent crops 0.00 0.00 0.00 0.00 

Marine water Pastures 0.00 0.00 0.00 0.00 

Marine water Agricultural areas 0.00 0.00 0.00 0.00 

Marine water Residential 0.00 0.00 0.00 0.00 

Marine water Industry & commerce 0.00 0.00 0.00 0.00 

Marine water Recreation areas 0.00 0.00 0.00 0.00 

Marine water Forest 0.00 0.00 0.00 0.00 
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4 A hybrid (semi) automatic calibration method for Cellular 

Automata land-use models: Combining evolutionary 

algorithms with process understanding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Newland, C.P., Maier, H.R., Zecchin, A.C., Newman, J.P. & Van Delden, H. A hybrid (semi) 

automatic calibration method for Cellular Automata land-use models: Combining evolutionary 

algorithms with process understanding. (Adapted for consistency). 



140 

 

 

Statement of Authorship 

 

Principal Author 

 

Co-Author Contributions 

By signing the Statement of Authorship, each author certifies that: 

i. The candidate’s stated contribution to the publication is accurate (as detailed 

above); 

ii. Permission is granted for the candidate to include the publication in the thesis; and 

iii. The sum of all co-author’s contributions is equal to 100% less the candidate’s 

stated contribution. 

  

Title of Paper A hybrid (semi) automatic calibration method for Cellular Automata 

land-use models: Combining evolutionary algorithms with process 

understanding 

Publication Status ☐ Published ☐ Accepted for publication 

☐ 
Submitted for 

publication ☒ 
Unpublished and Un-submitted 

work written in manuscript style 

Publication Details  

Name of Principal 

Author (Candidate) 

Charles P. Newland 

Contribution to the 

Paper 

Designed scope of study and experimental procedure, developed 

software, conducted experiments, performed analysis of results. 

Prepared manuscript. 

Overall percentage 

(%) 

70% 

Certification This paper reports on original research I conducted during the period 

of my Higher Degree by Research candidature and is not subject to 

any obligations or contractual agreements with a third party that would 

constrain its inclusion in this thesis. I am the primary author of this 

paper. 

Signature  

 

Date 28th Feb 2018 



141 

 

 

 

 

 

 

 

 

  

Name of Co-author Holger R. Maier 

Contribution to the 

Paper 

Assisted with developing scope of study, experimental procedure, and 

analysis of results. Reviewed manuscript. 

Signature  

 

Date 28th Feb. 2018 

Name of Co-author Aaron C. Zecchin 

Contribution to the 

Paper 

Assisted with developing scope of study, experimental procedure, and 

analysis of results. Reviewed manuscript. 

Signature Date 28th Feb. 2018 

Name of Co-author Jeffrey P. Newman 

Contribution to the 

Paper 

Assisted with software development for super-computer and 

conducting experiments. Reviewed manuscript. 

Signature  

 

Date 28th Feb. 2018 

Name of Co-author Hedwig Van Delden 

Contribution to the 

Paper 

Assisted with developing scope of study, experimental procedure, and 

analysis of results. Reviewed manuscript. 

Signature Date 28th Feb. 2018 



142 

 

A hybrid (semi) automatic calibration method for Cellular Automata land-

use models: Combining evolutionary algorithms with process understanding 

Abstract 

This paper presents a hybrid automatic calibration method for transition potential based 

Cellular Automata land-use models that integrates process-specific and optimisation-based 

calibration methods. Process-specific methods are computationally efficient and result in 

calibration parameters that align with process understanding, while optimisation-based 

approaches are able to identify parameters that provide the optimal trade-offs between 

calibration objectives, but are computationally demanding and less likely to generate 

parameters that are consistent with process understanding. To address the shortcomings of 

these two types of existing approaches, the proposed hybrid approach uses the outcomes of 

process-specific methods to initiate formal optimisation in promising regions of the parameter 

space, increasing computational efficiency and alignment with process understanding. The 

utility of the approach is tested via a case study application to Madrid, Spain, and was found to 

outperform both existing approaches in terms of objective performance and solution quality, 

generating simulated output maps and parameters more consistent with process understanding. 
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4.1 Introduction 

Land-use models are being used increasingly in a policy setting to support environmental and 

urban planning (Van Delden et al., 2011). Such models are used to explore the impacts of 

policy alternatives across a diverse range of disciplines, including river basin management 

(Van Delden et al., 2007), regional growth planning (Rutledge et al., 2008), development of 

sustainable agricultural practises (Wickramasuriya et al., 2009), and urban forecasting 

(Chaudhuri and Clarke, 2013a, Berberoğlu et al., 2016). To effectively model land-use 

changes, the complex ecological and socio-economic drivers must be effectively captured 

(Lambin et al., 2001). A preferred approach for modelling land-use changes is to use Cellular 

Automata (CA) based land-use models, due to their simplicity (Santé et al., 2010) and ability 

to explore land-use dynamics of large areas without detailed data requirements (Hewitt et al., 

2014). 

The intuitiveness and effectiveness of Land Use Cellular Automata (LUCA) models has led to 

the development of the generic modelling frameworks SLEUTH (Clarke et al., 1997) and 

Metronamica (Van Delden and Hurkens, 2011) that have well-tested model architectures, 

which has facilitated the application of such models to many different case studies (Chaudhuri 

and Clarke, 2013b, Van Delden et al., 2011). With generic platforms essentially obviating 

model software development requirements (Hewitt et al., 2014), there has been a greater 

research focus on the calibration of LUCA models (Blecic et al., 2015, Clarke-Lauer and 

Clarke, 2011, Li et al., 2013, Van Vliet et al., 2013b, Şalap-Ayça et al., 2018, Newland et al., 

2018a, Newland et al., 2018b). 

The process of calibrating LUCA models, which involves initial parameter setting, iterative 

parameter adjustment, and selection of a final parameter set (Newland et al., 2018a), is a 

complex process, because land-use change is a path dependent process with an uncertain 

outcome that must capture multiple interdependent drivers to accurately replicate land-use 

change dynamics (Brown et al., 2005). Conventionally, calibration has been a manual 

procedure, utilising the modeller’s process understanding to address these issues (White et al., 

1997, Barredo et al., 2003). However, manual calibration of LUCA models is time consuming 

(García et al., 2013) and inherently subjective (Jafarnezhad et al., 2016), making it a difficult 

process to repeat. Hence, to make the process more repeatable and efficient, there has been a 

large focus on automating LUCA model calibration. 
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The automation of LUCA model calibration requires quantitative measures of model 

performance that enable the simulated model output (i.e. a land-use map) to be compared with 

the corresponding data. Due to the inherent path-dependence of land-use change as a process, 

two separate properties of model performance must be considered, including locational 

agreement and landscape pattern structure (Newland et al., 2018a). Performance metrics 

quantifying these two classes of model performance assessment have been incorporated into 

automatic calibration methods for LUCA models that are implemented with a single dynamic 

urban class (Silva and Clarke, 2002, Wu, 2002, Li et al., 2013, Clarke, 2018) and those that 

consider multiple dynamic land-use classes (Blecic et al., 2015, García et al., 2013, Straatman 

et al., 2004, Van Vliet et al., 2013b), which are most commonly transition potential models 

derived from White and Engelen (1993c). The consideration of multiple dynamic land-use 

classes invariably makes the calibration of LUCA models more complex, as such models 

possess a significantly larger number of parameters (often on the order of hundreds) that require 

calibration to values that should be consistent with process understanding. 

Previous attempts at (semi) automatic calibration of LUCA models that consider multiple 

dynamic land-use classes can be broadly divided into two types. The first approach, termed 

process-specific, focuses on efficient calibration by exploiting process knowledge and 

mathematical properties of LUCA models to generate a set of parameters underlying a certain 

model process that is consistent with process understanding within a reasonable computational 

budget, achievable using a desktop PC (Straatman et al., 2004, Maas et al., 2005, Van Vliet et 

al., 2013b, Newland et al., 2018b). This efficiency focus means there is limited exploration of 

the impact of the trade-off between the objectives mentioned previously, limiting the ability to 

identify the best possible set of model parameters. 

The second approach to automate calibration is to use an optimisation-based approach, which 

aims to comprehensively search the LUCA model parameter space to identify the set (or sets 

in the case of multi-objective optimisation) of parameters that optimise the measures of model 

performance, and is a common approach to automatically calibrate LUCA models (Clarke, 

2018, Li et al., 2013, Liao et al., 2014). Both single-objective (García et al., 2013, Blecic et al., 

2015) and multi-objective (Newland et al., 2018a) optimisation algorithms have been used, 

with multi-objective optimisation allowing for a detailed exploration of the trade-off between 

the model performance objectives, and the influence this has on the resultant model parameters. 

However, the black-box nature of optimisation means the resultant parameters obtained may 

not be consistent with process understanding. Also, parallel computing resources are often 
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required for practical implementation of optimisation-based approaches (Blecic et al., 2015, 

Newland et al., 2018a). 

Both of the approaches to (semi) automatic calibration of transition potential LUCA models 

mentioned above have advantages and disadvantages. Process-specific methods are 

computationally efficient, and result in calibration parameters that align with process 

understanding, but have limited ability to explore different model parameterisations, making it 

unlikely the best parameter set is identified. Optimisation-based approaches have the ability to 

explore a large number of different possible model parameterisations, but are computationally 

demanding, often requiring parallel computing resources for practical implementation, and are 

less likely to generate parameters consistent with process understanding. To address the 

shortcomings of both methods, this paper proposes a hybrid approach that builds on the 

strengths of both methods. Therefore the objectives of this paper are: (i) to introduce a method 

for integrating the results of a process-specific automatic calibration approach into an 

optimisation-based approach; and (ii) to evaluate the utility of the proposed hybrid approach, 

and compare the results with standard implementations of the other two approaches. The 

remainder of this paper is organised as follows: Section 4.2 describes the proposed hybrid 

automatic calibration approach. Section 4.3 describes the case study application of the 

proposed approach, and Section 4.4 presents and discusses the results. The conclusions and 

recommendations following this body of work are presented in Section 4.5. 

4.2 Proposed approach to integrating process understanding into optimisation-based 

automatic calibration 

The proposed approach, shown in Figure 4.1, aims to improve the efficiency and parameter 

validity of multi-objective metaheuristic optimisation (e.g. genetic algorithm) automatic 

calibration approaches by seeding the optimisation process in promising regions of the 

parameter space, which is achieved with the assistance of a process-specific (or possibly 

manual) calibration method. This is likely to improve the speed with which globally optimal 

solutions are identified, therefore addressing one of the major shortcomings of optimisation-

based calibration methods. Additionally, by starting the optimisation in regions of the 

parameter space that align with domain knowledge, there is an increased likelihood that the 

parameters identified at the end of the optimisation process are more physically plausible, 

addressing the other major potential drawback of optimisation-based calibration. The approach 

is tailored to metaheuristics because of their demonstrated ability to automatically calibrate 

LUCA models (Veerbeek et al., 2015, Blecic et al., 2015, García et al., 2013, Clarke, 2018). 
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When metaheuristic optimisation approaches are used, the optimisation process (shown in 

Figure 4.1) involves the generation of populations of solutions consisting of sets of decision 

variable combinations (in this case model parameters), which are input into a model to generate 

simulated output, with the performance of each member of the population quantified by the 

objective function (in this case LUCA model performance metrics). Based on the optimisation 

operators (which vary depending on the algorithm used) new sets of decision variables are 

generated, and the process is repeated until some stopping criteria are met. 

Traditionally, a metaheuristic generates an initial population of candidate solutions using a 

random sampling method. However, the random generation of initial candidate solutions can 

impact the convergence rate of the metaheuristic, and potentially the quality of the final 

outcome obtained. This has been addressed in other fields by using domain knowledge to 

generate an initial population of solutions to “hot-start” the optimisation process, and has the 

ability to improve both the efficiency of the optimisation process, and the plausibility of the 

obtained results (Kang and Lansey, 2012, Bi et al., 2015, Bi et al., 2016a). Consequently, this 

philosophy has been adopted here by introducing an approach that generates the initial 

population of solutions for the metaheuristic optimisation algorithm with the aid of solutions 

identified using either a process-specific (semi) automatic (or possibly manual) calibration 

method. 

Given the multi-objective nature of the metaheuristic optimisation process, a number of Pareto 

optimal parameter sets (solutions) are generated, the relative merits of which can only be 

determined with the aid of user input. Consequently, the final step of the proposed approach 

involves model assessment, where parameter sets on the Pareto front are scrutinised in terms 

of the consistency of the simulated land-use maps and calibrated parameter sets with process 

understanding. In addition, the calibrated model is assessed with the aid of performance 

benchmarks and independent validation data. Details of each of these steps are given below. 
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Figure 4.1. Conceptual framework for proposed approach to integrating process 

understanding into optimisation-based automatic calibration 

 

4.2.1 Generation of initial solution 

For transition potential LUCA models, the generation of initial, high-quality solutions can be 

performed using a process-specific (semi) automatic calibration method (e.g. Straatman et al., 

2004, Maas et al., 2005, Van Vliet et al., 2013b), which will generate a set of calibrated model 

parameters that are consistent with process knowledge in an efficient manner. The method 

considered most appropriate is case study and user dependent. Alternatively, such initial 

solutions can also be obtained using manual calibration. 

4.2.2 Initial population generation 

The purpose of this step is to create an initial population of solutions that is located in promising 

regions of the parameter space, whilst also having sufficient diversity to enable exploration of 

other regions, which increases the chance that the globally optimal solutions are identified. 

Hence, the initial population not only includes the solutions that occur in good regions of the 

parameter space identified while generating the initial solution (Section 4.2.1), but also 

solutions in the vicinity of these solutions, as well as randomly generated solutions, as has been 
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done in other problem domains (Bi et al., 2015, Bi et al., 2016b). Consequently, the initial 

population is composed of three distinct types of solutions: 

1. Randomly generated solutions, following the standard initialisation procedure for a 

population-based metaheuristic; 

2. Process-specific solutions, generated using a process-specific (semi) automatic (or 

possibly manual) calibration approach; and 

3. Sampled solutions, generated by sampling from a distribution centred on the parameters 

of the process-specific solution. 

The first set of solutions is included to ensure sufficient diversity in the initial population, 

whereas the second and third types of solutions are used to initialise the optimisation in 

promising regions of the parameter space. What fraction of the total population is made up of 

the different solution types is user defined, and will vary depending on the case-study, and the 

desired balanced between convergence and exploration of the parameter space. Hence, the user 

must determine what percentage of the initial population is comprised of randomly generated 

solutions, process-specific solutions, and sampled solutions, and the required number of 

samples from each category has to be generated accordingly. 

As mentioned above, the sampled solutions are used to commence the optimisation process in 

a promising region of the parameter space (i.e. in the vicinity of the initially generated solution), 

by producing solutions that are similar to the one obtained from the process-specific or manual 

calibration approach. As suggested by Bi et al. (2016a), this is achieved by fitting a triangular 

distribution to each parameter, centred on the process-specific value obtained, as a triangular 

distribution permits sufficient differentiation of the parameter value within a fixed range (as 

opposed to a normal distribution, where the range is unbounded). 

An example of fitting a triangular distribution to a model parameter is shown in Figure 4.2, 

where the mean of the distribution θ, shown by the vertical grey line, corresponds to a process-

specific parameter value obtained in the initial calibration stage (Section 4.2.1), and the upper 

and lower limits, expressed as a percentage of the obtained parameter value, influencing the 

range of the potential sampled values. As shown, by increasing the limits, the potential range 

of parameter values obtained is broader. It is important to use limits that ensure sufficient 

variation of the parameters without generating values that are inconsistent with process 

understanding. 
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Figure 4.2. Comparison of triangular distributions with varying limits for sampling of 

parameter values 

 

4.2.3 Optimisation 

The proposed optimisation approach is an adapted version of the multi-objective optimisation 

framework of Newland et al. (2018a), where, rather than starting the optimisation process with 

a random population of solutions, the initial population is made up of a mixture of random and 

“good” initial solutions, obtained using the process outlined in Section 4.2.2. As part of the 

optimisation process, the optimisation algorithm takes the initial population of LUCA model 

parameter combinations and iteratively improves them by running each through the LUCA 

model to generate a simulated output map and calculating a set of land-use metrics to quantify 

the different aspects of LUCA model performance (i.e. locational agreement and landscape 

pattern structure) for each solution (Figure 4.1). The population of sets of parameter values is 

then adjusted based on feedback of the relative performance of the different parameter sets in 

the population using the metaheuristic operators (e.g. selection, cross-over and mutation in the 

case of a genetic algorithm). This process is repeated until certain stopping criteria, such as a 

fixed number of generations or convergence as indicated by performance measures such as the 

hyper-volume, are met. Given that locational agreement and landscape pattern structure are 
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competing optimisation objectives (Trunfio, 2006, Newland et al., 2018a), the outcome of the 

optimisation process is not a single set of optimal LUCA model parameters, but a set of 

parameters that represent an optimal trade-off between the two objectives, called the Pareto 

front. 

4.2.4 Assessment 

The last step is to assess the final output obtained. This assessment should consider the 

objective performance of the final output, the metrics for the calibration period evaluated 

against benchmark models of land-use change (Hagen-Zanker and Lajoie, 2008) and objective 

performance for an independent validation period. Assessment should also consider the 

physical plausibility of the output, by evaluating whether the simulated output maps and model 

parameters are consistent with process knowledge. After the assessment has been conducted, a 

final calibrated model can be determined for long-term scenario analysis. 

4.3 Case study 

To evaluate the utility of the proposed hybrid method, the case study implementation detailed 

in the following section is used, with details given for each step in the proposed approach. The 

Metronamica land-use model is used, with a case study of Madrid, Spain. Metronamica is a 

generic LUCA model that uses a transition potential as the allocation mechanism for land-use 

changes (Van Delden and Hurkens, 2011), and has had numerous applications to diverse 

regions (Aljoufie et al., 2016, Furtado et al., 2012, Van Delden et al., 2010, Shi et al., 2012). 

The transition potential is a function of the modelled processes considered, given in Equation 

4.1:  

 𝑇𝑃𝑐,𝑘 = 𝛾 ∙ 𝐴𝑐,𝑘 ∙  𝑆𝑐,𝑘 ∙  𝑁𝑐,𝑘 ∙  𝑍𝑐,𝑘  (4.1) 

where TPc,k is the transition potential for land-use class k in cell c (note that all subscripts have 

the same interpretation), Ac,k is the accessibility (the influence of provisions of infrastructure), 

Sc,k is the suitability (the influence of bio-physical factors such as slope), Nc,k is the 

neighbourhood effect (the spatial interactions between different land-uses in the competition 

for space), Zc,k is the zoning (the influence of spatial planning) and γ is a stochastic element, 

included to capture the uncertainty of human decisions. Additional information about the 

Metronamica model and the parameterisation of the processes included is available from other 

sources (RIKS, 2015, Engelen and White, 2008, van Delden and Vanhout, 2018). 

The Madrid case study is developed using the CORINE land-use data set (Haines-Young et al., 

2006). The model uses data from 1990 to 2000 as the calibration period, and 2000 to 2006 as 
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the validation period. A land-use map of the Madrid region in 1990 is shown in Figure 4.3. It 

covers an area of 400 by 400 cells at a resolution of 250 metres, covering a total area of 10,000 

km2. The 48 CORINE level 3 land-use classes are reclassified to the 14 classes shown in Figure 

4.3. Of the 14 classes, 1 is passive, 8 are actively modelled, and 5 are static classes (that do not 

change throughout the simulation). The case study includes major roads data for accessibility. 

Figure 4.3. Location of Madrid region and rasterised land-use map for 1990 

 

As the case study is based in an established urban region, the main drivers of land-use changes 

are likely to relate to the growth of existing socio-economic land-uses, with increased 

expansion of urban cores driven by self-organising behaviour (Couclelis, 1989, Batty and 

Longley, 1994, White and Engelen, 1993a). Hence, the most important processes to consider 

are those driving the expansion of urban regions, the neighbourhood interactions and 

accessibility (Verburg et al., 2004). Consequently, suitability and zoning are not included for 

calibration in this case study. The parameters for neighbourhood rules and accessibility are 

selected for automatic calibration, and each neighbourhood rule is parameterised as shown in 

Figure 4.4, following the form: 

 

𝑦(𝑥) =  {
𝑐 for 𝑥 = 0

𝑎𝑒−𝑏𝑥  for 0 < 𝑥 ≤ 𝑥𝑐
0  for 𝑥 > 𝑥𝑐

 (4.2) 
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where a and b are the controlling parameters of the neighbourhood rule, x is the distance, y(x) 

is the influence value, c is the locus point of inertia or conversion, and xc is the critical distance 

where the influence is set to zero. As there are 8 active classes and 14 total classes, there are a 

total of 112 neighbourhood rules, and hence 336 neighbourhood rule parameters for calibration. 

For accessibility, two parameters are included for each actively modelled land-use class to 

capture the influence of major roads, meaning a total of 16 accessibility parameters are 

calibrated. Hence, in total, 352 parameters require calibration. 

Figure 4.4. Parameterisation of neighbourhood rule using an exponential decay function 

 

For the (semi) automatic calibration methods, objectives of locational agreement and landscape 

pattern structure are required. Locational agreement is quantified using two metrics: Fuzzy 

Kappa (Hagen-Zanker, 2009) and Fuzzy Kappa Simulation (Van Vliet et al., 2013b). Two 

metrics are used to balance between the two types of agreement these metrics quantify, that of 

all cells in the land-use map, measured by Fuzzy Kappa (FK), and cells that transition between 

the two time slices, measured by Fuzzy Kappa Simulation (FKS). Both metrics have the same 

functional form: 

 
𝐹𝐾 =  

𝑃𝑂 − 𝑃𝐸
1 − 𝑃𝐸

 (4.3) 

where PO is the observed agreement, and PE is the expected agreement between the two 

categorical raster maps. FK and FKS vary by how the observed and expected agreement is 

calculated. 
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To measure landscape pattern structure, the clumpiness metric is used (McGarigal, 2014). As 

clumpiness is measured at the class level and a single value is required as an objective, the 

error between the actively allocated land-use classes is aggregated to a single value by taking 

the area-weighted average for the eight actively modelled land-use classes, henceforth referred 

to as the Area-Weighted Clumpiness Error (AWCE): 

 

𝐴𝑊𝐶𝐸 =  
1

𝑁𝐴
∑𝐶𝐸𝑖 ∙ 𝑛𝑖

𝐴

𝑖

 (4.4) 

where NA is the total number of cells that contain actively allocated land-use classes, A is the 

total number of actively modelled land-use classes, CEi is the clumpiness error of active class 

i, and ni is the number of cells occupied by the class i.  

4.3.1 Implementation of proposed approach 

4.3.1.1 Generation of initial solution 

To generate an initial candidate solution that is consistent with process understanding in an 

efficient manner, the semi-automatic calibration method of Newland et al. (2018b) is used. 

This method uses empirical analysis to evaluate the different types of spatial interactions, 

which can be organised into four interaction groups: inertia points (IP), conversion points (CP), 

self-influence tails (ST) and cross-influence tails (CT), to identify the major set of interactions 

driving land-use changes in a region, and efficiently calibrates the corresponding 

neighbourhood rules. This method consists of four stages: 

1. Interaction elimination; 

2. Parameter categorisation; 

3. Coarse parameter adjustment; and 

4. Fine parameter adjustment. 

A brief summary of each stage is provided below. 

Stage 1, the interaction elimination stage, is used to reduce the complexity of the calibration 

problem by identifying the main set of interactions within each interaction group that is driving 

land-use changes within the region of interest. The parameters corresponding to these rules are 

subsequently calibrated and the parameters that do not correspond to major interactions are 

eliminated from consideration (i.e. set to zero). To achieve this, empirical analysis and 

significance testing are applied to the calibration data to identify the meaningful interactions 

within the region. 
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For the specific case study, all inertia points and self-influence tails are included for calibration, 

and only conversion points and cross-influence tails are eliminated. Significance testing is 

performed using the Mann-Whitney U-test to generate a z-score for the conversion points and 

cross-influence tails, by evaluating the presence of a certain land-use class in the 

neighbourhood of cells that transitioned to another land-use class, relative to the presence of 

the neighbourhood class in the entire land-use map. Empirical analysis of the conversion points 

is based on the contingency table, a form of confusion matrix (Congalton, 1991) that logs the 

land-use class of each cell for two time slices, from which the conversion rate is calculated. 

Conversion points corresponding to a conversion rate of ≥2.5% and a significance level of 

>1.96 (the 95% confidence limit) are included for calibration. The enrichment factor is used to 

perform the empirical analysis of the cross-influence tails, to identify meaningful attractive 

influences. Cross-influence tails corresponding to log-scaled enrichment factor values of 

greater than zero, suggesting over-representation and hence an attractive influence, and a 

significance level >1.96 are included for calibration. 

Stage 2, the parameter categorisation stage, is used to further reduce the complexity of the 

calibration problem. This is achieved first by introducing a set of meta-parameters, θCP, θST, 

and θCT, which express the inter-type importance of each interaction relative to the inertia point 

interactions (e.g. how important conversion points are compared to inertia points). Second, 

parameter categorisation limits the parameters’ values to a finite set of possible categorised 

values, and allocates each parameter included for calibration within each interaction group to 

one category value based on empirical analysis. Hence, the intra-type importance for each 

interaction type is defined. The categorisation is performed by using empirical analysis to 

assign each parameter within the four parameter groups to one of a user-defined number of 

categories. For this case study, three categories are used for each parameter group, graded as 

either low, medium or high. Allocation of the inertia and conversion points is based on the 

inertia and conversion rate, respectively, both derived from the contingency table. Allocation 

of the self-influence and cross-influence tails is based on the enrichment factor. 

Stage 3, the coarse parameter adjustment stage, is where LUCA model performance is 

improved via calibration of the meta-parameters (introduced in Stage 2), which control the 

categorised neighbourhood weighting parameters. To perform this, one meta-parameter is 

sampled within a range, and the meta-parameter value that optimises model performance is 

selected, based on an evaluation of the performance metrics (FK, FKS and AWCE) and 

discursive interpretation of the output. This meta-parameter is then fixed, and the next meta-
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parameter sampled, until all three have been tuned. The tuned meta-parameters are used to 

generate the set of neighbourhood rules that serve as the input to the fine parameter adjustment 

stage. For this implementation, the meta-parameters were sampled in the following order: θST, 

θCP, and θCT. 

Stage 4, the fine parameter adjustment stage, aims to further improve LUCA model 

performance. The fine parameter adjustment is initialised using the output of the coarse 

adjustment stage, corresponding to a good starting point in the parameter space. The fine 

parameter adjustment considers the individual neighbourhood weighting parameters, 

iteratively refining each parameter to optimise the performance metrics within the available 

computational budget, which is achieved using a line-search algorithm. As a line-search 

algorithm is used, the measures of calibration performance must be combined into a single 

measure of performance. This is achieved by taking a weighted sum of the performance 

objectives, which requires a range and weight to be specified for each metric considered, 

allowing for a preference for a certain objective. To improve the diversity of the initial 

population generated, two candidate solutions are used. Both use a balanced preference of 

objectives, however, one results in slightly better performance for FK and FKS, and the other 

for AWCE. The final output of this stage are two parameter sets that result in good objective 

performance (i.e. outperforms the performance benchmarks) and have parameters that are 

consistent with process understanding. 

4.3.1.2 Initial population generation 

The initial population generation requires the population size to be specified. The population 

size used is 383, as for optimisation problems with many decision variables (which is the case 

for this problem), a population size is required that is larger than the number of decision 

variables (parameters) to find non-dominated solutions (Wang et al., 2015). The population 

size is also informed by the parallelisation scheme adopted for optimisation (see below). The 

proportions of the three types of solutions (i.e. randomly generated, process-specific, sampled, 

see Section 4.2.2) within this population are summarised in Table 4.1, and were determined 

from preliminary testing. As shown, a majority of the solutions are randomly generated to 

ensure sufficient diversity within the search. This is because elitism used in the multi-objective 

evolutionary algorithm used (NSGA-II, see Section 4.3.1.3) preserves the best performing 

solutions, and not including a large percentage of randomly generated solutions types causes 

premature convergence, making exploration entirely dependent upon the probability of 

mutation. Two copies of the two process-specific solutions are included to explore different 
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promising regions of the parameter space, and the remaining percentage of the total population 

is generated via the sampling approach, applied to both process-specific solutions, to ensure 

sufficient exploration of the promising regions of the parameter space that have both good 

objective performance and are consistent with process knowledge. 

Table 4.1. Proportion of solution types used for initial population 

Solution type Number of total 

population 

Percentage of total 

population (%) 

Randomly generated 304 79.4% 

Process-specific 4 (2 copies of each) 1.0% 

Sampled 75 19.6% 

 

To generate the sampled solutions a triangular distribution is fitted to each neighbourhood rule 

parameter centred on the parameter value obtained at the conclusion of the process-specific 

method. Parameters that were eliminated as part of the process-specific method are set to zero, 

and not sampled, though still included in the subsequent optimisation to allow for further 

exploration of the parameter space. Different limits are trialled to ensure sufficient variation of 

the parameters without compromising the quality of the solution obtained, with a width of 25% 

of the obtained parameter value working best to achieve this. For each candidate solution, 150 

sampled solutions are generated. From the combined 300 solutions, a total of 75 are extracted, 

based on Pareto dominance (i.e. extracting non-dominated solutions from the available 

candidates), to serve as the sampled input. 

4.3.1.3 Optimisation 

As mentioned previously, this work uses the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) proposed by Deb et al. (2002), because of its demonstrated ability to tune LUCA 

model parameters (Trunfio, 2006, Cao et al., 2014, Newland et al., 2018a). A recommended 

configuration of the NSGA-II algorithm was used (Newland et al., 2018a), including a 

probability of cross-over of 0.9 and a probability of mutation of 0.0028, the latter equalling the 

inverse of the number of decision variables. The stopping criterion adopted is based on reaching 

a set number of generations, 310, which was the number that could be completed in 48 hours 

of runtime using a parallelised version of NSGA-II (see Newland et al., 2018a). To account for 

stochasticity in the Metronamica model during the optimisation process, the map comparison 

metrics are averaged across ten stochastically generated replicates of simulated land-use maps 

for each iteration of NSGA-II, as suggested by Newland et al. (2018a). 
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The parallelised version of NSGA-II was run on the Phoenix high performance computing 

resources operated by Research Services at the University of Adelaide. The optimisation runs 

are evenly distributed across a number of CPU processing cores, with a number of slave 

processes evaluating the objective functions of different members of the population, and a 

master process co-ordinating the search, using the NSGA-II genetic operators (selection, cross-

over, mutation, non-dominated sorting and crowding distance) to evolve the population of 

solutions. 

4.3.1.4 Assessment 

The utility of the proposed calibration method is evaluated by considering its objective 

performance, the quality of the simulated output and the realism of the calibrated parameters 

obtained, to determine a final, calibrated model. As part of the first step of this process, the 

Pareto front of solutions for the calibration and validation periods are evaluated against 

benchmark models, from which reference metrics are calculated, to determine if the output 

solutions have correctly captured modelled processes. Two benchmark models are used, the 

growing clusters neutral model (Van Vliet et al., 2013b), and the random constraint match 

neutral model (Hagen-Zanker and Lajoie, 2008). The benchmark metrics are calculated for FK 

and AWCE, as FKS has an implicit baseline at a value of zero, as summarised in Table 4.2. 

Table 4.2. Benchmark metric values for different benchmark models 

 Growing Clusters Random Constraint Match 

Period FK AWCE FK AWCE 

Calibration 0.884 0.035 0.895 0.058 

Validation 0.924 0.014 0.923 0.025 

 

Next, in order to enable the realism of output maps and calibrated model parameters to be 

assessed, five solutions are extracted from those on the Pareto front for further consideration. 

To capture the diversity of the performance based on the objectives, three solutions are selected 

that correspond to the best objective performance for each metric (i.e. the solution with the 

highest FK, the solution with the highest FKS, and the solution with the lowest AWCE). Two 

intermediate solutions are also evaluated, one balanced between FK and FKS that had poor 

AWCE performance, and one balanced between AWCE and FK with poor FKS performance. 

The degree to which the simulated output maps have captured the observed processes of land-

use changes is assessed by visual inspection of the simulated output maps for these five 

solutions compared with the corresponding data. In order to evaluate the realism of the resultant 
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parameters, key parameters that differentiate the solutions based on which are more consistent 

with process knowledge, including inertia points, conversion points for conversions to the class 

residential, conversion points for conversions to the class permanent crops, influence tails for 

influence on the class residential, and the accessibility parameters, are considered, as it is not 

possible to present this analysis for all 352 parameters. 

The utility of the proposed method is also evaluated by comparing the results from the seeded 

approach introduced in this paper with those obtained using the process-specific solutions 

(Section 4.3.1.1) and the standard, unseeded implementation of NSGA-II for optimisation-

based calibration, starting with a randomly generated population (see Newland et al., 2018a). 

The unseeded method is configured the same as the seeded, as described in Section 4.3.1.3 

(same probability of cross-over, probability of mutation, population size), and run for the same 

number of generations. 

In order to enable the performance of two approaches that produce a Pareto front of solutions 

(i.e. the seeded and unseeded optimisation approaches) to be compared in an objective fashion, 

the hyper-volume metrics (Zitzler, 1999) of the final Pareto fronts obtained are compared. The 

hyper-volume calculates the volume of the multi-dimensional region enclosed by the Pareto 

front and a reference point, which provides a quantitative measure of solution quality and 

diversity. For this research, the hyper-volume is calculated by scaling the objectives to the 

range [0, 1] based on the observed maximum and minimum values of the two Pareto fronts, to 

ensure a balanced comparison between the different objectives. The hyper-volume is calculated 

from the nadir point in the objective space, the worst performance expected for the metrics 

used. As the ranges are normalised, the nadir point is 0 for FK and FKS (as these objectives 

are maximised) and 1 for AWCE (as this objective is minimised). 

The performance of the seeded and unseeded optimisation approaches is also evaluated based 

on the degree to which the calibrated models align with process knowledge using the approach 

outlined above (i.e. the realism of the resulting maps and selected parameters are assessed for 

five calibrated models corresponding to those with the highest FKS, highest FK and lowest 

AWCE, as well as those for two intermediate solutions). Finally, the computational efficiency 

of the two optimisation methods is compared based on the number of generations required 

before all the Pareto front solutions are considered plausible, defined by solutions 

outperforming the calibration benchmarks, and the hyper-volume metric calculated for certain 
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generations during the optimisation. At the conclusion of the evaluation, a final, calibrated 

model is recommended. 

4.4 Results and discussion 

The results presented are divided as follows. First, the utility of the proposed seeded 

optimisation approach is evaluated by considering the objective performance metrics for the 

calibration and validation periods, the visual assessment of the simulated output maps for the 

five selected solutions, and an evaluation of a key set of resultant parameters that differentiate 

solution quality. Following this, the performance is compared with the two alternative 

calibration methods, unseeded optimisation and process-specific, considering objective 

performance, simulated output, parameter validity, and efficiency of the optimisation process. 

Following the evaluation a final, calibrated model is recommended. 

4.4.1 Performance of seeded approach 

4.4.1.1 Objective performance 

The three-dimensional objective performance of the seeded approach for the calibration period 

is shown in Figure 4.5 (two-dimensional cross-section plots of the objectives are shown in 

comparison plots with the other two methods in Figure 4.13). In total, 239 Pareto optimal 

solutions were identified, with the shading of the blue indicating the relative performance for 

AWCE (lighter points correspond to lower (better) AWCE values). The black lines indicate the 

performance benchmark metric values, with the solid and dashed lines showing the growing 

clusters and random constraint match benchmarks, respectively. In Figure 4.5, the benchmarks 

for AWCE are not shown, as the errors obtained from the benchmark models are much greater 

than the values obtained for the seeded approach in the calibration period (see Table 4.2). As 

shown, a meaningful trade-off was found between the objectives, particularly for FK vs AWCE 

and FKS vs AWCE. All Pareto optimal solutions outperformed the benchmark metrics for the 

calibration period. 
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Figure 4.5. Objective performance of the output from the seeded method for the calibration 

period. Solutions analysed in more detail are highlighted in black. The degree of shading of 

the dots indicates the AWCE performance, with lighter dots corresponding to lower (better) 

AWCE values. The solid and dashed lines correspond to the growing clusters and random 

constraint match performance benchmark, respectively (benchmark error values for AWCE 

are not shown as they were significantly higher than the plot scale). 

 

Figure 4.6 shows the performance of the seeded approach for the validation period with a three-

dimensional plot of the objective performance metrics (two-dimensional cross-section plots of 

the objectives are shown in Figure 4.14). In Figure 4.6, the benchmark plane for AWCE is 

included for the growing clusters model. As shown, there is less spread in the solutions for the 

validation period, though the performance is still generally good, as a majority (86%) of the 

solutions outperform the performance benchmarks. The solutions that did not meet the 

performance benchmarks for validation were due to having higher AWCE values than the 

growing clusters benchmark model. 
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Figure 4.6. Objective performance of the output from the seeded method for the validation 

period. The degree of shading of the dots indicates the AWCE performance, with lighter dots 

corresponding to lower (better) AWCE values. The solid and dashed lines correspond to the 

growing clusters and random constraint match performance benchmark, respectively. 

 

4.4.1.2 Simulated output evaluation 

As mentioned in Section 4.3.1.4, five solutions were analysed, shown by the black dots in 

Figure 4.5 and henceforth referred to as Solution 1 to Solution 5, with Solution 1 corresponding 

to the point shown in Figure 4.5 with the best FKS and FK performance, but the highest AWCE, 

to Solution 5 corresponding to the point shown in Figure 4.5 with the lowest AWCE, but 

relatively poor performance in terms of FKS and FK. These solutions were analyzed in further 

detail by considering the simulated output maps generated for the calibration period. These are 

shown in Figure 4.7, with 4.7(a-1) showing the data map for the end of the calibration period 

(2000), and the remaining maps showing simulated output for each solution, ordered by 

decreasing FKS value. Also shown are agreement maps between the data and the simulated 

output for the classes residential (red in the land-use map) and industry & commerce (purple 

in the land-use map), as these are the major urban classes and capturing their behavior 

accurately is a major focus of calibration. 
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From the simulated output evaluation, Solution 1 (best FKS) and Solution 2 (Intermediate 1), 

with corresponding simulated output maps 4.7(b) and 4.7(c) are most consistent with 

expectation, given the more accurate replication of the data, particularly the highlighted urban 

classes. This is discussed further for the classes residential, industry & commerce, and airports. 
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Figure 4.7. Simulated output maps for the calibration period for five selected solutions for 

the seeded method. (a-1) is the data map for 2000. The remaining maps are ordered into 

rows by decreasing FKS value, from (b) the output for Solution 1 (best FKS), to (f) the output 

for Solution 5 (best AWCE). The fist column (e.g. (b-1)) shows the simulated output map for 

the selected solution, the second column (e.g. (b-2)) shows the agreement of the class 

residential between the data and corresponding simulated output, and the third column (e.g. 

(b-3)) shows the agreement of the class industry & commerce between the data and 

corresponding simulated output 

 

As shown in Figure 4.7, the simulated output across the solutions analysed exhibits a general 

tendency for the residential areas to be more clustered in the simulated output than in the data, 

and tends to favour the existing larger residential clusters, suggesting the solutions place an 

over-emphasis on the attraction of residential to itself. In addition, some of the solutions have 

not captured the correct transitions for the allocation of new residential areas. This is most 

noticeable in 4.7(f-2) and 4.7(e-2). In these solutions, the conversion from arable land to 

residential appears to be more common than in the data, while 4.7(b-2) and 4.7(c-2) appear the 
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most consistent with the data, having captured the conversions to residential from arable land 

and natural areas, which is consistent with these solutions corresponding to higher FKS values. 

The appearance of the industry & commerce (purple) areas in the simulated output is also 

generally more clustered than in the data. This clustering is less prominent in Figures 4.7(b-3) 

and 4.7(c-3), whereas Figures 4.7(e-3) and 4.7(f-3) show much larger clusters of industry & 

commerce, particularly in the northern area of the main urban region, which, as shown in Figure 

4.7(f-1), is near an area of residential, which would not be expected. When analysing the 

historic data, new areas of industry & commerce tended to be located near major roads. Some 

of the solutions did not appear to capture this attraction, and the ones that did, 4.7(f-3), and to 

a lesser extent 4.7(e-3), seem to favour an allocation near different roads than expected based 

on the data. The latter issue could potentially be resolved by further differentiating the various 

road types, as only one type of road was included. 

Figure 4.7 also shows behaviour for the airports (grey) in the eastern portion of the land-use 

map that is not consistent with expectation. Airports tend to be near urban areas, but are not 

expected to be attractors of residential or recreation areas, or attractors of natural classes, such 

as forest. However, there appears to be an attractive influence for the different classes for 

certain solutions to the nearby neighbourhood of the airport. Figures 4.7(b-1), 4.7(c-1) and 

4.7(d-1) show the airport being surrounded by forest (dark green), while Figure 4.7(f-1) shows 

that recreation (brown) completely surrounds the airport area. 4.7(e-1) shows the airport being 

surrounded by industry & commerce and forest, and while the former land-use is known to be 

attracted to airports, this behaviour was not found in the historic data. The obtained parameters 

in the discussed solutions confirmed the attraction of the different land-uses to the airport, so 

a solution to eliminate this behaviour in future would be to exclude such unrealistic interactions 

from the parameter space during the optimisation (preserving the parameter elimination from 

the process-specific approach). Additionally, introducing metrics such as the enrichment factor 

(Van Vliet et al., 2013b), which focus on neighbourhood composition, as an optimisation 

objective could potentially improve the resultant output. 

As detailed previously, a majority of the solutions exhibited overly large clusters of the urban 

land-use classes compared to the data, which suggests that landscape pattern structure has not 

been as effectively captured as possible to generate simulated output consistent with process 

understanding. This is particularly noticeable given that Solutions 4 and 5, the two solutions 

analysed with the lowest AWCE, had simulated output that was not as consistent with process 
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knowledge as the other solutions analysed. This suggests that using area-weighting to aggregate 

the class level clumpiness errors may not be the most effective strategy that could be used to 

generate simulated output consistent with process understanding, as this focussed too much on 

capturing the behaviour of the active classes that occupied a majority of the area in the land-

use map (see Contingency table, Supplementary material 4B). Given the relatively small area 

occupied by the urban classes, they had limited influence on the resultant metrics during the 

calibration procedure. Hence, the simulated output could potentially be improved by adjusting 

the aggregation strategy used, for example, by using a weighting scheme with a greater 

emphasis on the urban classes. This would ensure a greater focus on capturing the error 

associated with these classes, potentially producing simulated output more consistent with 

process understanding. Also, additional metrics could be used during the automatic calibration 

procedure that emphasize different pattern aspects, such as the fractal dimension or edge 

density (McGarigal, 2014). 

4.4.1.3 Parameter evaluation 

The inertia parameters obtained for the different seeded solutions were generally consistent 

with expectation, as shown in Figure 4.8. However, of those analysed, Solution 1 is the most 

consistent with process understanding. As shown, the general trend is for the urban classes 

(residential and industry & commerce) to exhibit the highest inertia, and agricultural land-use 

classes arable land, pastures, and other agriculture, to exhibit the lowest inertia, with the other 

classes exhibiting moderate inertia. While this general trend is observed across the solutions, 

Solution 1 has better captured this dynamic, as the class pastures does not exhibit high inertia, 

unlike the other cases. 
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Figure 4.8. Comparison of inertia point influence values per class for seeded solutions 

 

The conversion point parameters obtained for the seeded method were another example of 

results being generally consistent with expectation, as shown in Figure 4.9, with relatively high 

conversion values from the classes arable land and other agriculture. However, of the solutions 

analysed, Solution 3 is the most consistent with expectation. This is because for the other 

solutions, certain conversions are higher than expected, such as conversion from the class 

industry & commerce for Solutions 1 and 2, and from permanent crops for Solution 5. These 

conversions potentially explain the more clustered residential areas observed in the simulated 

output maps (Figure 4.7). 
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Figure 4.9. Comparison of conversion point influence values per class for transitions to the 

class residential for the seeded solutions 

 

Conversions to the class permanent crops are shown in Figure 4.10. Across the solutions 

analysed, these parameters were generally positive, which might be expected for conversions 

from the classes natural areas and arable land (which are the dominant conversions across the 

solutions) but not for the classes residential, recreation areas, and forests, as is the case for 

Solutions 2 and 5. 
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Figure 4.10. Comparison of conversion point influence values per class for transitions to the 

class permanent crops for the seeded solutions. 

 

Influence tails between the different land-use classes were generally consistent with 

expectation, though this varied across the solutions evaluated. An example of this is shown for 

the cross-influence tails to the class residential for the solutions analysed, shown in Figure 4.11 

for the influence of urban classes (residential, industry & commerce, recreation areas). As 

shown, Solution 5 exhibits much lower self-influence of the class residential than the other 

solutions analysed, such that the self-influence is less than the cross-influence of industry & 

commerce, which is not consistent with expectation. 

The influence tails also show that the seeded optimisation did not always preserve the 

parameter elimination from the initial population of process-specific and sampled solutions 

with the implementation used. Certain conversions from airports and mine & dump sites to 

residential (Supplementary material 4A) are not consistent with expectation, but are seen in 

the final model parameterisation and explain certain formations in the simulated output (see 

Section 4.4.1.2). 
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Figure 4.11. Comparison of neighbourhood influence tails for urban classes to the class 

residential for the seeded solutions 

 

The accessibility parameters are shown in Figure 4.12 for the urban classes residential, industry 

& commerce, and recreation areas, with the weight and distance-decay parameters being 

similar across the classes and solutions, though the distance-decay for recreation areas was 

generally lower than for the other two. Though this is consistent with expectation, the 

parameter values are fairly equal, consistent with evaluation of the simulated output in that 

roads had a limited influence on the resultant output (Section 4.4.1.2). 
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Figure 4.12. Comparison of accessibility parameter values for classes residential, industry 

& commerce, and recreation areas for the seeded solutions 

 

Given that certain parameters were calibrated to values inconsistent with process understanding 

suggests that such parameters, for example, the conversions from permanent crops to industry 

& commerce and the influence of mine & dump sites on residential had a limited influence on 

the simulated output and hence the objectives of model performance for the calibration period, 

meaning they were not emphasized during calibration. However, parameters that are 

inconsistent with process understanding limit model validity, and the potential for application 

to long-term scenario analysis. Hence, further improvements could be made to the automatic 

calibration method to improve model validity. An example would be to place more constraints 

on certain parameters during the optimisation, which could be based on the parameter 

elimination from the process-specific approach, to limit the possible ranges of the parameters. 

Alternatively, these parameters could be eliminated entirely from automatic calibration, which 

could also make the optimisation more efficient. 

4.4.2 Comparative assessment 

4.4.2.1 Objective performance 

A comparison of the objective performance of the different calibration methods is presented in 

Figure 4.13 for the calibration period, comparing the 239 Pareto optimal points for the seeded 

method (blue dots) with the 306 Pareto optimal points identified using the unseeded method 

(red dots) and the two process-specific solutions (green dots). Figure 4.13(a) shows the three-
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dimensional objective space and indicates the benchmark metric values as planes in the three-

dimensional space. Figures 4.13(b)–4.13(d) show a two-dimensional comparison of the trade-

off between the different combinations of performance objectives, FKS against AWCE (b), FK 

against AWCE (c) and FK against FKS (d). Figures 4.13(b)–4.13(d) indicate the solutions that 

were subsequently evaluated, with black dots for the seeded approach and black diamonds for 

the unseeded approach. 

Figure 4.13 shows that the seeded optimisation method outperformed both other calibration 

methods in the objective space for the calibration period. The starting position of the process-

specific solutions has clearly been improved upon, and the Pareto front has better objective 

performance and more diversity than the Pareto front of the unseeded approach. This is 

particularly observed in Figure 4.13(c) and 4.13(d) where, as seen in the bi-objective 

comparison, the Pareto solutions from the proposed method completely dominate all Pareto 

solutions from the unseeded approach. The resultant hyper-volume value reinforces this (scaled 

to the minimum and maximum values observed in Figure 4.13), with a value of 0.717 for the 

seeded approach, versus 0.358 for the unseeded. 

(a) 
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(b) 

(c) 
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(d) 

Figure 4.13. Comparison of objective performance for the calibration data for the 

optimisation methods run for 310 generations, and the process specific solutions. (a) a 3-

D plot of the objective space; (b) a cross-section of the bi-objective space for FK vs 

AWCE; (c) a cross section of the bi-objective space for FKS vs AWCE; and (d) a cross 

section of the bi-objective space for FKS vs FK. Solid and dashed lines indicate the 

growing clusters and random constraint match neutral model benchmarks respectively. 

Black dots and diamonds show analysed solutions for the seeded and unseeded methods 

respectively. 

 

The improved objective performance of the seeded solutions over the other two methods was 

even more pronounced for the validation period (shown in Figure 4.14), suggesting that the 

results for the seeded calibration method better generalise to the case study. As shown in all bi-

objective comparisons, the Pareto solutions from the proposed method dominate those from 

the unseeded method with regard to FK and FKS, with limited deterioration in the AWCE 

values. The hyper-volume metric reinforces this, with a value for the seeded method (with 

scaling to the minimum and maximum values observed) of 0.728, versus 0.490 for the unseeded 

method. 
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(a) 

(b) 
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(c) 

(d) 

Figure 4.14. Comparison of objective performance for the validation data for the 

optimisation methods run for 310 generations and the process specific method: (a) a 3d 

plot of the objective space; (b) a cross-section of the bi-objective space for FK vs AWCE; 

(c) a cross section of the bi-objective space for FKS vs AWCE; and (d) a cross section of 

the bi-objective space for FKS vs FK. Solid and dashed lines indicate the growing clusters 

and random constraint match neutral model benchmark respectively 
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4.4.2.2 Simulated output comparison 

Comparison of the simulated output maps via visual interpretation suggests that the seeded 

approach was more consistent with the data than the unseeded and process-specific solutions. 

The simulated output maps are presented in Figure 4.15 for the selected solutions for the 

unseeded method, and Figure 4.16 for the process-specific solutions. The seeded output 

performs better because the clustering of the urban land-uses residential (red) and industry & 

commerce (purple) is more consistent with the data than for the other methods. Of the 

alternative methods, the unseeded output (Figure 4.15) generated simulated maps with more 

clustering of the major urban classes residential (red) and industry & commerce (purple) across 

the solutions analysed than the data and the corresponding seeded output. For the process-

specific solutions (Figure 4.16), the solution with a slight preference for locational agreement 

exhibited less clustering of the urban classes analysed (though still more than the data) but 

removed residential area in the south-west region, shown in Figure 4.16(b-2), which is not 

consistent with expectation. The solution with a slight preference for landscape pattern 

structure exhibited a similar issue, and also resulted in large clusters of industry & commerce 

in totally different areas than observed in the data, shown in Figure 4.16(c-3), though this 

solution did appear to include sufficient attraction to the relevant roads in the allocation of 

industry & commerce. 
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Figure 4.15. Simulated output maps for the calibration period for five selected solutions for 

the unseeded method. (a-1) in the data map for 2000. The remaining maps are ordered into 

rows by decreasing FKS value. The fist column (e.g. (b-1)) shows the simulated output map 

for the selected solution, the second column (e.g. (b-2)) shows the agreement of the class 

residential between the data and corresponding simulated output, and the third column (e.g. 

(b-3)) shows the agreement of the class industry & commerce between the data and 

corresponding simulated output 
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Figure 4.16. Simulated output maps for the process-specific calibration method compared 

with the calibration data (a-1), that resulted in better locational agreement performance (b-

1) to (b-3) and better landscape pattern structure performance (c-1) to (c-3) for the 

calibration period. Maps in the middle column (e.g. (b-2)) show the agreement of the class 

residential between the simulated output and data. Maps in the right-most column (e.g. (b-

3)) show the agreement of the class industry & commerce between the simulated output and 

data. 
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4.4.2.3 Parameter comparison 

The calibrated parameters obtained from the seeded method were more consistent with 

expectation than those obtained for the unseeded method and similar with the process-specific 

parameters. Hence, comparisons are only presented between the seeded and unseeded method. 

This is illustrated for the parameters previously discussed (Section 4.4.1.3), with comparison 

plots presented in Supplementary material 4A. 

Generally, the calibrated parameter values obtained using the unseeded method were higher 

than those of the corresponding seeded parameters, leading to parameter values that are less 

consistent with expectation. This was exhibited for the inertia point parameters for the 

unseeded solutions, with agricultural classes (such as pastures and other agriculture) 

exhibiting inertia values that were approximately equivalent to those of the urban classes 

(residential, industry & commerce, recreation areas), which is inconsistent with expectation, 

as agricultural land-uses generally exhibit less inertia to facilitate allocation of new urban 

classes. Hence, such parameter values could limit long-term application. This led to other 

conversion and influence parameters being much higher than expected, which potentially 

explains why more clustering was observed in the simulated output (Figure 4.15). Additionally, 

the unseeded method generated more parameter values across solutions that were less 

consistent with process understanding, such as a high conversion parameter for residential to 

permanent crops and vice-versa, and higher attraction between infrastructure classes and urban 

classes (highlighted in Supplementary material 4A for the influence of airports on residential 

and road & rail on residential). 

4.4.2.4 Optimisation efficiency 

The optimisation process was more efficient for the seeded approach, when considering the 

computational effort to generate a full Pareto front of solutions considered valid for the 

calibration period with respect to the benchmark tests, and the hyper-volume metric (scaled to 

the minimum and maximum values observed in Figure 4.13). This is shown in Table 4.3, which 

shows the percentage of solutions in the Pareto front for a set of generations that outperform 

the benchmarks, and hence would be considered valid. As shown, the seeded approach 

generated plausible models with far less computational effort, requiring only 20 generations 

for the Pareto front to consist entirely of plausible solutions. By contrast, over 80 generations 

are required for this to happen with the unseeded approach. The efficiency of the seeded 

approach is also highlighted by the hyper-volume metric, which at generation 80 for the seeded 

method is greater than the value at generation 310 for the unseeded method. 
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Table 4.3. Comparison of percentage of Pareto front solutions outperforming benchmark 

performance metrics and hyper-volume for seeded and unseeded calibration methods 

 Pareto front solutions 

outperforming performance 

benchmarks (%) 

Hyper-volume 

Generation Seeded Unseeded Seeded Unseeded 

0 0% 0% 0.015 0.000 

10 93% 0% 0.136 0.000 

20 100% 0% 0.217 0.000 

40 100% 78% 0.331 0.064 

80 100% 99% 0.447 0.180 

160 100% 100% 0.550 0.283 

310 100% 100% 0.717 0.358 

 

4.4.3 Determination of final calibrated model 

Of the (semi) automatic calibration methods compared in this analysis, the seeded method 

performed better than the unseeded and process-specific method. The objective performance is 

superior to the other methods, especially for the validation period, suggesting better generalised 

behaviour, and the corresponding simulated output and parameter values reflect this, as they 

were more consistent with process understanding than the other two methods. Of the seeded 

solutions evaluated, the best solution corresponded to Solution 1, generating the simulated 

output shown in Figure 4.7(b), which was most consistent with the data, and had parameters 

that tended to be more consistent with expectation across the evaluated seeded (and other) 

solutions. The recommended parameterisation for the case study is given in Supplementary 

material 4C. 

4.5 Conclusions 

To address issues with the computational efficiency and parameter validity of optimisation-

based approaches applied to automatically calibrate transition potential based LUCA models, 

this research proposed a method to integrate process understanding into optimisation-based 

automatic calibration. The proposed method was used to generate an initial population of 

solutions, based on the output of a process-specific semi-automatic calibration method, to 

initialise a multi-objective optimisation algorithm with a diverse set of solutions, some of 

which occurred in good regions of the parameter space. The presented method is generic, 

allowing for the use of different optimisation algorithms, land-use models, and process-specific 

calibration methods. 
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The performance of the seeded approach was demonstrated via application to a case-study of 

Madrid, Spain, with its utility compared with that of a standard, unseeded implementation of 

an optimisation-based automatic calibration method, and a process-specific semi-automatic 

calibration method. The key advantage of the seeded approach over the other two methods was 

superior objective performance, identifying more diverse Pareto front solutions with better 

performance (as quantified by the objectives) for both the calibration and validation data. This 

translated to the seeded method producing simulated output maps and calibrated parameters 

that were more consistent with process understanding. The seeded approach also had an 

efficiency advantage in the generation of plausible calibrated models with respect to the 

benchmarks, requiring less computational effort to generate an entire Pareto front of plausible 

solutions. 

Given the advantages achieved using a seeded approach, further avenues utilising such an 

approach should continue to be explored. Further improvement could be achieved by 

integrating greater parameter reduction in the seeded optimisation approach, by preserving the 

parameter elimination from the process-specific method used for this specific implementation, 

or based on discursive knowledge, to reduce the parameters included for optimisation-based 

calibration. Additionally, further improvements could be achieved by using different metrics 

as calibration objectives during optimisation that evaluate different aspects of the land-use map. 

These improvements could lead to more plausible model parameterisations being generated, 

and improve the efficiency of the method. These advantages presented have the potential to 

make the application of optimisation-based automatic calibration methods for LUCA models 

more efficient and effective in the support of policy development for long term planning. 
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4.7 Supplementary material 

4.7.1 Supplementary material 4A: Comparison plots of parameters analysed for seeded and 

unseeded calibration method 

This section contains a series of plots comparing the parameters obtained from the seeded and 

unseeded calibration methods, the inertia point parameters, the conversion point parameters for 

transitions to the class residential, conversion point parameters for transitions to the class 

permanent crops, influence tails for interactions for conversions to the class residential, and 

the accessibility parameters. Generally, the unseeded calibration method resulted in higher 

parameter values. The unseeded method also resulted in more examples of parameters that were 

not consistent with expectation, for example, high inertia across a majority of classes (Figure 

4A.1), high conversion values for transitions from the classes forest and permanent crops to 

residential (Figure 4A.2), greater emphasis on transitions to permanent crops from the class 

residential (Figure 4A.3), attractive influences on residential land-use exerted by classes such 

as airports and seaports (Figure 4A.7), and no weighting given to residential land-use by 

accessibility (Figure 4A.8). 

Figure 4A.1. Comparison of inertia influence per class for analysed solutions for seeded 

and unseeded calibration methods 
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Figure 4A.2. Comparison of conversion point influence values to class residential for 

each land-use class for analysed solutions for seeded and unseeded calibration methods 

 

 

Figure 4A.3. Comparison of conversion point influence values to class permanent crops 

for each land-use class for analysed solutions for seeded and unseeded calibration 

methods 
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Figure 4A.4. Comparison of tail influences to the class residential for the natural land-

use classes for analysed solutions for seeded and unseeded calibration methods 

 

 

Figure 4A.5. Comparison of tail influences to the class residential for the agricultural 

land-use classes for analysed solutions for seeded and unseeded calibration methods 
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Figure 4A.6. Comparison of tail influences to the class residential for the urban land-use 

classes for analysed solutions for seeded and unseeded calibration methods  

 

 

Figure 4A.7. Comparison of tail influences to the class residential for the infrastructure 

land-use classes for analysed solutions for seeded and unseeded calibration methods 
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Figure 4A.8. Comparison of accessibility parameters for the urban land-use classes for 

analysed solutions for seeded and unseeded calibration methods 
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4.7.2 Supplementary material 4B: Contingency table 

This section contains a contingency table for the data maps for the Madrid case study for the calibration (1990-2000) period. 

Table 4B.1. Madrid contingency table, 1990-2000 

  Map 2000 

 LUC NAT ARL PER PAS OAG RES I&C REC FOR R&R POR AIR M&D FRE MAR TOT 

M
ap

 1
9

9
0
 

NAT 46821 268 3 0 50 1051 316 164 357 31 0 12 161 20 0 49254 

ARL 1540 55265 30 0 383 1492 1059 121 32 70 0 92 351 26 0 60461 

PER 50 18 4278 0 0 29 3 0 0 0 0 0 18 5 0 4401 

PAS 13 0 0 624 0 23 5 0 0 0 0 0 0 0 0 665 

OAG 191 34 15 0 20761 207 45 22 6 5 0 0 101 0 0 21387 

RES 1 4 0 0 6 7653 85 31 0 1 0 0 0 0 0 7781 

I&C 3 8 0 0 0 15 1152 5 0 0 0 0 0 0 0 1183 

REC 0 0 0 0 0 37 0 656 0 0 0 0 0 0 0 693 

FOR 55 16 0 0 8 21 0 11 12164 0 0 0 0 7 0 12282 

R&R 0 0 0 0 0 0 0 0 0 145 0 0 0 0 0 145 

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AIR 0 0 0 0 0 0 4 0 0 0 0 494 0 0 0 498 

M&D 33 6 0 0 0 29 26 39 0 0 0 0 368 2 0 503 

FRE 24 4 0 0 0 0 0 0 0 0 0 0 0 719 0 747 

MAR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TOT 48731 55623 4326 624 21208 10557 2695 1049 12559 252 0 598 999 779 0 160000 
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4.7.3 Supplementary material 4C: Final model parameterisation 

This section contains the final, calibrated parameters for the Madrid case study 

Table 4C.1. Inertia/Conversion parameters 

From/To ARL PER PAS OAG RES I&C REC FOR 

NAT 2.68 47.03 0.55 28.67 16.98 0.23 7.60 47.99 
ARL 249.16 33.99 5.47 41.23 36.12 53.09 40.42 82.27 
PER 5.13 852.27 6.38 7.27 5.61 7.73 33.68 2.47 
PAS 10.02 1.34 300.84 24.44 32.77 0.06 12.41 35.97 
OAG 49.07 23.07 7.43 304.17 51.45 43.53 74.89 15.39 

RES 30.25 5.04 0.56 7.06 1350.05 4.17 66.99 18.98 

I&C 1.07 3.46 15.83 2.08 35.93 992.73 6.37 1.61 

REC 5.20 0.27 19.74 1.38 13.23 12.29 701.94 18.95 

FOR 12.41 3.26 12.83 23.28 7.25 17.07 4.27 880.82 

R&R 1.96 10.64 6.75 6.63 0.01 4.55 17.07 8.74 

POR 13.21 10.35 0.56 27.60 14.63 20.38 24.04 6.66 

AIR 1.82 1.20 13.10 42.78 12.72 29.52 0.06 4.82 

M&D 10.94 29.87 4.24 11.89 12.52 2.51 58.30 8.42 

FRE 0.01 12.06 3.63 25.85 29.76 17.68 0.29 3.19 

 

Table 4C.2. Neighbourhood rule a parameters 

From/To ARL PER PAS OAG RES I&C REC FOR 

NAT -31.91 1.41 7.92 -20.93 -65.35 -4.79 5.86 -3.99 

ARL 34.84 28.40 -30.06 6.63 34.39 19.79 -19.00 5.07 

PER 2.63 61.31 -42.36 27.61 6.94 -3.23 -2.61 -21.57 

PAS 9.17 -8.67 86.80 13.78 94.37 16.27 -7.61 27.16 

OAG 6.82 44.57 -4.01 76.12 -19.17 -10.54 -1.90 18.37 

RES -76.40 28.58 -3.62 -66.99 91.60 12.41 23.32 -29.36 

I&C -13.64 44.29 14.05 6.79 98.63 43.51 19.69 -4.16 

REC -13.83 -19.45 -18.26 -39.72 98.83 12.69 98.19 -3.29 

FOR 23.85 -40.39 -0.48 -28.76 38.92 -30.36 -73.53 57.09 

R&R -27.21 6.79 -31.67 55.99 8.66 17.71 10.73 -24.12 

POR -51.59 2.52 -48.00 -11.05 26.88 -31.46 18.74 1.79 
AIR -20.08 1.68 -9.39 1.38 1.60 44.64 5.18 69.36 

M&D 18.44 81.39 21.24 -3.07 28.09 77.74 82.08 8.99 
FRE 11.73 -1.30 -10.35 -3.78 -26.25 18.32 20.19 -6.57 

 

  



191 

 

Table 4C.3. Neighbourhood rule b parameters 

From/To ARL PER PAS OAG RES I&C REC FOR 

NAT 1.00 2.69 3.32 2.76 1.31 3.81 1.72 3.42 
ARL 3.38 3.17 1.18 2.81 4.18 2.29 3.22 1.44 
PER 2.16 1.77 2.38 2.22 2.71 2.77 1.79 2.27 
PAS 3.30 2.02 2.21 3.01 2.79 2.60 3.72 2.79 
OAG 2.55 2.35 1.77 2.27 0.65 1.14 3.19 2.59 
RES 1.28 1.47 2.13 1.14 1.40 0.90 1.53 4.01 
I&C 2.45 2.97 2.62 2.17 1.84 0.81 2.20 3.84 
REC 1.92 2.21 4.27 2.65 2.44 0.73 0.84 1.00 
FOR 3.02 0.80 2.37 2.64 2.59 3.01 2.16 1.72 
R&R 0.20 1.90 2.67 2.59 2.42 0.68 2.22 2.72 
POR 1.92 2.80 2.01 1.28 3.04 2.51 3.98 3.00 
AIR 2.35 2.30 2.41 2.27 3.97 1.56 0.50 0.70 

M&D 2.53 1.36 2.15 1.41 1.12 2.01 0.86 1.57 
FRE 3.20 2.72 2.02 1.30 1.63 2.95 2.28 1.77 

 

Table 4C.4. Accessibility parameters 

Land-use class Major roads distance 

decay 

Major roads weight 

ARL 2.06 0.00 
PER 2.72 0.00 
PAS 1.39 0.00 
OAG 0.10 0.00 
RES 20.00 0.41 
I&C 18.75 0.40 
REC 13.42 0.47 

FOR 1.81 0.00 
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5 Conclusions 

Given the value that Cellular Automata (CA) based land-use models can provide in the 

development of policy and spatial planning, and the availability of generic Land Use Cellular 

Automata (LUCA) models for direct application to the study region of interest, application of 

LUCA models has gained increased research focus recently. Of the three major types of LUCA 

model frameworks, pattern extrapolation, development probability and transition potential, 

transition potential models have gained increasing attention, especially in relation to their 

calibration because transition potential based LUCA models are traditionally calibrated 

manually, which is time-consuming, subjective, and difficult to repeat. Hence, there is a large 

focus on the development of automatic calibration methods for transition potential based 

LUCA models. 

Automatic calibration requires objective measures of model performance, and for transition 

potential based LUCA models, two distinct aspects must be considered, locational agreement 

and landscape pattern structure. Hence, metrics quantifying both aspects should be included 

for automatic calibration. Additionally, parameter dimensionality, the number and range of 

possible parameters, plays a large role in the complexity of automatic calibration, as transition 

potential based LUCA models generally feature hundreds of parameters for calibration. 

In order to address these issues, two main forms of (semi) automatic calibration methods have 

been developed for transition potential based LUCA models. The first are optimisation-based 

approaches, which generally use a population-based metaheuristic, where a population of 

solutions is generated (i.e. a number of different sets of LUCA model parameter values), which 

are adjusted based on some operators to improve the objective performance of the solutions 

over a number of iterations, and are effective at generating multiple possible model 

parameterisations. The second are process-specific approaches, targeted to the parameters 

underlying a specific process (commonly the neighbourhood rules capturing spatial dynamics), 

aiming to generate a calibrated model that is consistent with process knowledge efficiently. 

This thesis has presented new methodologies for both types of approaches, as well as a method 

for combining the two approaches, to facilitate the (semi) automatic calibration of transition 

potential based LUCA models to support policy development and spatial planning. 

5.1 Research contribution 

The major contribution of this work has been the development of a set of robust, generic 

methods for the (semi) automatic calibration of transition potential LUCA models. The 
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proposed methods facilitate (semi) automatic calibration using either of the two common 

approaches, and also allow for a combined approach where the benefits of both are utilised. 

The utility of each method has been demonstrated via case study applications, and each show 

promising potential for future applications of LUCA models to support long term planning and 

policy development. Specifically, in meeting the primary objectives of this research that were 

presented in the Introduction, the following research contributions were made: 

A generic multi-objective optimisation framework for automatic calibration of transition 

potential LUCA models was developed in Paper 1 (Chapter 2). The framework is generic, 

allowing for substitution of the various components (e.g. the LUCA model, metrics, and the 

optimisation algorithm), utilises multi-objective optimisation to allow for the exploration of 

trade-offs between the LUCA model performance objectives, appropriately considers the 

inherent stochasticity included in LUCA models, and facilitates increased computational 

efficiency through its implementation. The capability of the generic framework was illustrated 

with an application to the Randstad region of the Netherlands. The results indicated that the 

method was able to effectively generate multiple plausible model parameterisations that, 

following further assessment and refinement, could be used for long-term analysis. 

A process-specific semi-automatic calibration method that integrates objective analysis with 

discursive input to facilitate efficient calibration of neighbourhood rules with a limited 

computational budget (i.e. achievable using a desktop PC) was developed in Paper 2 (Chapter 

3). The method first reduces the complexity of the calibration problem and then calibrates the 

remaining neighbourhood rules in a computationally efficient manner. The utility of the 

proposed approach was demonstrated via application to four European case studies with 

varying physical characteristics and rates of growth. The results indicated that the method was 

capable of generating calibrated models outperforming the provided benchmarks, with model 

parameters and simulated output that were consistent with empirical expectation. 

A generic framework for hybrid automatic calibration, which integrates domain knowledge 

into a multi-objective optimisation approach, was developed in Paper 3 (Chapter 4). The hybrid 

approach, tailored to population-based metaheuristics, seeds the optimisation algorithm with a 

diverse initial population, including solutions identified using a process-specific method that 

occur in good regions of the parameter space and are consistent with process knowledge. The 

performance of the seeded approach was demonstrated via a case-study application to Madrid, 

Spain, resulting in multiple plausible model parameterisations that were consistent with process 
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understanding. The utility of the hybrid method was also compared with that of the standard, 

unseeded implementation of an optimisation-based automatic calibration method introduced in 

Chapter 2, and the process-specific method introduced in Chapter 3. The seeded method 

outperformed the other two approaches in terms of objective performance and solution quality 

that was more consistent with process knowledge. 

This research also met the set of secondary objectives that were presented in the Introduction, 

naturally aligned with the development of automatic calibration methods for LUCA models, 

making the following research contributions: 

Across the three papers, the impact of aggregating class level landscape pattern structure 

metrics, for this research measured using the clumpiness error, to a single measure, on the 

automatic calibration output was explored. Paper 1 used the average to aggregate the class-

level errors of the clumpiness metric, which was found to over-represent minor land-use 

classes, and suggested a different aggregation method was required for conversion to a single 

value. Subsequently, the area-weighted clumpiness error was used in the case study application 

of the process-specific approach (Paper 2) and the hybrid approach (Paper 3), and was found 

to better capture the overall performance of the model calibration, though potential 

improvements could still be made by weighting the error more towards the main classes that 

are the focus of calibration (i.e. urban land-use classes). 

The three papers also investigated the impact of the selected locational agreement metric(s) on 

the resultant calibrated model. Locational agreement metrics generally focus on either 

measuring the agreement of the entire land-use map, quantified in this research using Fuzzy 

Kappa (FK), or the subset of cells that transitioned, quantified in this research using Fuzzy 

Kappa Simulation (FKS). Paper 1 identified a potential trade-off between the FK and FKS 

metrics. Consequently, both were included as objectives for the process-specific method in 

Paper 2, and it was found that, for this approach, best performance generally required balancing 

between the two. The trade-off between the two metrics was confirmed in Paper 3, where three 

calibration objectives were used. Hence, it is important to capture both elements of locational 

agreement when using a (semi) automatic calibration method. 

Finally, the development of the (semi) automatic calibration methods included the integration 

of discursive knowledge into the application and analysis. Papers 2 and 3 demonstrated how 

discursive knowledge can facilitate more efficient calibration. All three papers also showed 

that integrating empirical knowledge into the evaluation, by considering the realism of the 
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simulated output and the plausibility of the parameters obtained, allowed for more robust final 

calibrated models to be obtained. In turn, using an automatic approach also provided insights 

into the model structure and its behaviour, to improve the understanding of the LUCA model 

itself, and the interplay of factors driving land use change. 

5.2 Limitations 

There were certain limitations of this research, which are discussed below. 

1. There are a number of metrics for the quantification of locational agreement and 

landscape pattern structure. This research only considered three metrics, selected based 

on preference, including Fuzzy Kappa, Fuzzy Kappa Simulation, and clumpiness. As 

automatic calibration methods are driven by the performance objectives used, different 

metrics have the potential to influence the results obtained. 

2. Applications of multi-objective optimisation-based automatic calibration methods were 

implemented using the Non-dominated Sorting Genetic Algorithm II. However, there 

is a range of available optimisation algorithms that could be used that could potentially 

improve the solutions obtained or find them in a more computationally efficient 

manner. 

3. The neighbourhood rules were parameterised using shape functions to reduce the 

parameter dimensionality during automatic calibration. However, this removed the 

potential for more complex neighbourhood relationships to be obtained, which could 

potentially improve model performance. 

4. The proposed methods have been developed to calibrate for two data maps with a 

certain time interval between them. The time interval between the data maps has the 

potential to impact the results obtained, particularly for the process-specific method 

(Paper 2) that bases the elimination of parameters on the available data. The impact of 

the duration between the data could be further explored to determine the impact on 

automatic calibration. 

5. Results outperformed benchmarks of common growth strategies, but did not fully 

capture behaviour that was consistent with process knowledge for certain case studies, 

due to limited integration of this knowledge, which could improve the validity of the 

output of (semi) automatic calibration methods. 

6.  The broader application of a LUCA model included as part of a decision support 

system generally involves stakeholder input in the calibration process. Stakeholder 
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involvement in the calibration process was not considered, though each calibration 

method allows for discursive interpretation. This could be explored in future work. 

7. Only a small number of predominantly urban case studies was tested, which potentially 

limits the generality of the results. 

8. Automatic calibration was limited to parameters underlying neighbourhood rules and 

accessibility, not considering suitability or zoning, which could improve the resultant 

automatic calibration output. 

5.3 Future work 

Based on the above limitations, the following future work in proposed. 

1. Future application of the proposed methods using different metrics to quantify 

locational agreement and landscape pattern structure. This could include the use of a 

greater number of objectives (a maximum of three was used in this research) to further 

investigate the resultant trade-offs, which may be found for different landscape pattern 

structure metrics. The impact on solution quality could be investigated via discursive 

interpretation to determine which set(s) of metrics result in the most realistic 

performance. 

2. Development of metrics to capture aspects of the discursive evaluation not currently 

captured by locational agreement or landscape pattern structure metrics, which could 

be included as automatic calibration objectives. 

3. Further application of different optimisation algorithms, via substitution into the 

proposed multi-objective optimisation framework, to determine if superior 

performance can be achieved. This includes the use of metaheuristics, such as particle 

swarm optimisation (Blecic et al., 2015), or the use of hyper-heuristics (Maier et al., 

2015) that combine different optimisation algorithms. 

4. Further exploration of alternative parameterisations of neighbourhood rules to permit 

more complex shapes to be generated during automatic calibration. 

5. Further investigation of the impact the time interval has on the resultant calibration. For 

the process-specific method, this could include evaluating the time interval in 

conjunction with the thresholds used for parameter elimination. 

6. Further research into understanding land-use dynamics and the incorporation of 

discursive knowledge into automatic calibration methods. 
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7. The use of the automatic calibration frameworks as part of a participatory calibration 

approach (Hewitt et al., 2014), where stakeholder feedback is integrated into the 

assessment of the automatic calibration output. 

8. Application of automatic calibration methods to a larger number of case studies with a 

more diverse range of characteristics and land-use classes. 

9. Application of automatic calibration that includes suitability and zoning parameters, 

and integrating process knowledge of these parameters into seeding. 
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