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Abstract
Floods are devastating natural hazards that can have severe socio-economic impacts

and lead to a loss of life. Consequently, the key driver for this research is to pro-

vide techniques that will lead to an increase in flood forecast skill. As fluvial floods

are a direct result of rainfall, detailed knowledge of uncertainties in rainfall obser-

vations provides a fundamental foundation for improving both rainfall and flood

forecast skill. As the understanding of uncertainties present in rainfall time series is

developed, so too will the confidence in rainfall forecasts, and short- and long-term

streamflow forecasts. For a description of rainfall uncertainty to be complete it must

take into account uncertainty when rainfall was not observed, thus allowing, model

structural errors to be correctly identified, analyzed, and treated. Therefore the fo-

cus of this thesis is to develop a robust methodology to estimate rainfall time series

and its uncertainty such that it is consistent with both streamflow and soil moisture

observations.

To effectively estimate rainfall time series, a method to reduce hydrological input

data dimensionality was identified. The effective reduction of hydrological input

data dimensionality allows modern parameter estimation algorithms to simultane-

ously estimate rainfall time series and model parameters. Due to their wide-spread

use as model input data reduction techniques in other fields, the discrete cosine

transform (DCT) and discrete wavelet transform (DWT) were used, for compara-

tive purposes, to reduce the dimensionality of observed rainfall time series for the

438 catchments in the Model Parameter Estimation Experiment (MOPEX) data set.

Once the time series were reduced to a small number of parameters, the rainfall time

series were reconstructed for comparison with the observed hyetographs. The rain-

fall time signals are then reconstructed and compared to the observed hyetographs

using standard simulation performance summary metrics and descriptive statistics.

Analysis of the results demonstrate that, when compared to the DCT, the DWT is

superior at preserving both short- and long-term rainfall patterns.

Second, the DWT was used to reduce the dimensionality of the input rainfall time
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series for the catchment of Warwick, Queensland, Australia. The DREAM(ZS) sam-

pling algorithm, in conjunction with a likelihood function that considers both rain-

fall and streamflow, was then used to estimate the input rainfall time series. Model

parameters and rainfall time series were simultaneously estimated. The inclusion

of rainfall in the estimation process improved the root mean square error (RMSE) of

streamflow simulations by a factor of up to 1.78. This was achieved while estimating

an entire rainfall time series, inclusive of days when none was observed.

Last, rainfall time series for the catchment of Warwick were estimated using three

different rainfall-runoff models. Using the rainfall time series and model parameter

estimates, remotely sensed soil moisture observations from the Soil Moisture Ocean

Salinity (SMOS) and Advanced Microwave Scanning Radiometer - Earth observing

system (AMSR-E) satellites were assimilated into each of the models using an en-

semble Kalman filter (EnKF). Through analysis of the innovations from the observed

and simulated soil moisture it was found that the combination of model choice and

remotely sensed soil moisture product had a significant impact on the quality of

rainfall estimated. When compared to streamflow simulations obtained via the sole

estimation of model parameters, all models that jointly estimated rainfall time series

and model parameters produced superior streamflow estimates. Rainfall estimates

obtained using the Sacramento Soil Moisture Accounting (SAC-SMA) model were

the most realistic. When the SMOS remotely sensed soil moisture product was as-

similated into the SAC-SMA, innovations that indicated errors are of a Gaussian

nature were obtained. Further, streamflow simulations obtained from the SAC-SMA

had the best RMSE.

The research presented in this thesis developed a methodology that can be used to

estimate and evaluate rainfall estimates obtained using model input data reduction,

model inversion, and data assimilation techniques. These rainfall estimates can be

used to condition rainfall forecasts and consequently improve flood forecast skill.
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Chapter 1

Introduction

1.1 Overview

There exists an opportunity to increase the skill of flood forecasts by improving rain-

fall forecasts and their ability to simulate streamflow events. The research conducted

for this thesis makes sequential steps towards improved rainfall forecasts. To be

able to improve rainfall forecasts a greater understanding of the uncertainties in

rainfall observations and how these uncertainties propagate through hydrological

models needs to be developed. The first component of this research evaluates the

Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) for hy-

drologic model input data reduction. The identification of an effective method to

reduce hydrologic input data allows the second research task to be undertaken. The

second research task simultaneously estimates areal rainfall time series and rainfall-

runoff model parameter distributions. These estimates of areal rainfall time series

and model parameter distributions are able to simulate streamflow that is superior

to streamflow that is simulated by models that are forced with the rainfall observa-

tions. The final research task conducts an analysis of Ensemble Kalman Filter (EnKF)

innovations to identify the presence of bias in rainfall estimates, model choice and

Remotely Sensed (RS) Soil Moisture (SM) observations. Future research can lead to

an improvement in rainfall forecasts by conditioning them with unbiased rainfall

estimates that simulate superior streamflow.
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1.2 Importance of flood forecasting

Natural hazards impinge on the ability of developing countries and countries that

depend on climate reliant industries to grow socio-economically. Fourteen of twenty-

five mega-cities are located in coastal regions and thus are more exposed to natural

hazards (Chhibber and Laajaj, 2013). An increase in knowledge and understanding

of how these events form and affect society can only lead to more prepared and re-

silient communities.

Accurate, precise and timely forecasts are the holy grail of flood forecasting. Floods

cost the Australian economy on average $377M1 per year (Deloitte Access Economics,

2013). The 2010-2011 Brisbane floods alone resulted in 33 confirmed deaths and

$2.38 billion in economic damage (Queensland Floods Commission of Inquiry, 2012).

The quality and usefulness of flood forecasts are largely constrained by data avail-

ability and the implementation of modeling techniques.

An efficient and effective flood warning system is comprised of weather observa-

tion systems, weather and flood forecasting models, flood warning dissemination

systems, and emergency response procedures (Sene, 2008). Due to inherent complex-

ities in model structural formulation and obtaining accurate measurements, signif-

icant systematic and random errors are prominent in flood forecasting models and

remote sensing data. With advancements in computational power as well as remote

sensing capability, considerable improvements in data availability, data quality and

flood forecast skill have been made. These improvements can be leveraged to fur-

ther develop hydrology and flood forecasting (Cloke and Pappenberger, 2009).

Flood forecast skill is hinged upon the quality of hydrometeorological observations

and predictions (Ebert and McBride, 2000).

1.3 Statement of problem

Rainfall time series that are constructed from gauge based observations are the pri-

mary input for rainfall-runoff models. The gauges that contribute observations to-

wards the rainfall time series are considered highly accurate at a point. However,

1Unless otherwise stated, this thesis uses Australian dollars
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they often lack the spatial density required to represent catchment wide rainfall.

Conversely, ground and satellite based radar systems are able to capture spatial rain-

fall patterns and include large inaccuracies.

The rainfall time series that are used to force a flood forecasting rainfall runoff model

are called Quantitative Precipitation Forecasts (QPFs) and are generated from Nu-

merical Weather Prediction (NWP) models. To best represent catchment rainfall

these QPFs are often conditioned using past gauge based rainfall observations.

Consequently, the primary goal of this research is to develop methodologies to esti-

mate rainfall time series and their associated uncertainty such that they can be used

to condition QPFs and ultimately improve flood forecasts.

1.4 Objectives and scope of research

The main research questions and hypotheses for this thesis are

1. Is the DWT or DCT most appropriate for reducing hydrological input data?

It is hypothesized that the DWT will be most appropriate for reducing hydro-

logical input data due to its superior ability to decompose an input signal into

multi-resolution components.

2. Can an increased understanding of hydrologic uncertainty be gained by esti-

mating rainfall from streamflow observations using the DWT and model in-

version techniques?

It is hypothesized that use of model input data reduction and model inversion

techniques will provide enhanced estimates of rainfall by estimating rainfall

and its associated uncertainty for an entire rainfall time series, including when

rainfall was not observed.

3. Using the results from the previous research question, can rainfall estimates be

constrained by soil moisture observations?

It is hypothesized that the ability to constrain rainfall estimates using soil mois-

ture observations will depend on the rainfall-runoff model that is chosen to be
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inverted as well as the quality of the soil moisture observations. Models that

are most able to characterize a catchments soil moisture characteristics will

have a better chance at estimating rainfall time series and model parameters

that can be used to simulate soil moisture states which present little bias when

compared with soil moisture observations. It is also expected that these com-

binations of model, rainfall and model parameter estimates, and soil moisture

observations will be able to simulate streamflow that is superior to that which

would be obtained if the rainfall estimation and data assimilation process was

not used.

1.5 Outline of research

The research conducted for this thesis was comprised of three sequential tasks that

can be broken down as follows

1. Evaluation of transforms for effective model input data reduction

(a) Review transforms that have been used in literature to reduce the dimen-

sionality of input data

(b) Present a theoretical comparison of the DWT and DCT

(c) Collect data from the MOPEX data set

(d) Use transforms to reduce the dimensionality of input data

(e) Compare the ability of each transform to reconstruct the observed rainfall

data using a number of simulation performance summary metrics

2. Simultaneously estimate rainfall time series and model parameter distribu-

tions

(a) Select a rainfall-runoff model that is widely accepted by the hydrological

community, characterizes key components of the rainfall-runoff process,

can be adapted to assimilate RS SM and, has been demonstrated to simu-

late streamflow well
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(b) Develop a methodology that is built upon Bayesian inference to simulta-

neously estimate rainfall time series and model parameters

(c) Select an Australian catchment that has both, been subjected to multiple

floods in recent years and has good quality data available

(d) Develop and conduct a synthetic case study to demonstrate the applica-

bility of the rainfall estimation methodology

(e) Present the results of the synthetic case study and provide detailed anal-

ysis and discussion

(f) Develop and conduct a real world case study to demonstrate the applica-

bility of the rainfall estimation methodology

(g) Present the results of the real world case study and provide detailed anal-

ysis and discussion

3. Analysis of data assimilation innovations obtained using the rainfall estimates

(a) Select multiple models with which the data assimilation innovations and

rainfall estimates may be compared against each other

(b) Collect RS SM observation products from at least two missions

(c) Estimate rainfall time series and model parameter sets for each model

using the methodology developed

(d) Assimilate both RS SM products into each model for all rainfall time series

and model parameter sets

(e) Analyze the data assimilation innovations for Gaussianity

(f) Present the analysis results and discuss their implications

1.6 Structure of thesis

Including the Introduction chapter, this thesis is comprised of 6 chapters. The re-

maining 5 chapters are



6 Chapter 1. Introduction

• Chapter 2: Literature review

The literature review provides a broad overview of floods and flood fore-

casting before identifying key areas of hydrological uncertainty. Following

this a detailed analysis of rainfall estimation methodologies is given. Existing

knowledge gaps are identified and research questions that will fill these gaps

are formulated. Lastly, opportunities for utilization of the research are given.

• Chapter 3: Hydrological model input data reduction

This chapter begins with a statement outlining where the research presented in

this chapter sits in relation to the research questions and thesis as a whole. The

main body of the chapter is a verbatim reproduction of the published journal

article, A comparison of the discrete cosine and wavelet transforms for hydrologic

model input data reduction and presents a theoretical and numerical evaluation

of the DWT and the DCT for model input data reduction using the Model

Parameter Estimation Experiment (MOPEX) data set. The introduction of this

paper supplements the literature review and presents a more targeted review

of the relevant literature.

• Chapter 4: Rainfall estimation

This chapter begins with a statement outlining where the research presented in

this chapter sits in relation to the research questions and thesis as a whole. The

main body of the chapter is a verbatim reproduction of the published journal

article, Estimating rainfall time series and model parameter distributions using model

data reduction and inversion techniques and presents a novel methodology to si-

multaneously estimate entire rainfall time series and model parameter distri-

butions. The introduction of this paper supplements the literature review and

presents a more targeted review of the relevant literature.

• Chapter 5: Data assimilation analysis of rainfall estimates

This chapter begins with a statement outlining where the research presented in

this chapter sits in relation to the research questions and thesis as a whole. The

main body of the chapter is a verbatim reproduction of the submitted journal

article, A multi-model hydrological analysis of rainfall estimates using Kalman filter

soil moisture innovations and presents a method that can be used to detect bias
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present in rainfall estimates, model choice or remotely sensed soil moisture

observations. The introduction of this paper supplements the literature review

presents a more targeted review of the relevant literature.

• Conclusions

This chapter presents a discussion of the main conclusions that can be drawn

from this research and outlines possible outcomes and directions of future

work.
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Chapter 2

Literature review

In a white paper commissioned by the Australian Business Round table for Disaster

Resilience & Safer Communities, Deloitte Access Economics (2013) indicate that natu-

ral disasters, on average, cost the Australian economy $6.3 billion annually. A major

proportion of this expenditure is as a result of flooding (Gentle, 2001). It is estimated

that this figure could inflate to $23 billion by 2050. It is identified that significant

socio-economic savings, of approximately 50%, can be realized by improved plan-

ning, preparedness, and resilience measures. Adding skill to the flood forecasting

knowledge base is one such measure.

This chapter provides an overview of the flood forecasting knowledge base before

identifying specific knowledge gaps. Research questions that address these knowl-

edge gaps will ensure that the research conducted adds skill to the flood forecasting

knowledge base. Lastly, opportunities for utilization of the research are identified.

2.1 Floods

Floods are generally distinguished from each other based on their location and the

combination of mechanisms that generate them. The focus of this thesis is on fluvial

floods that occur in inland catchments. Fluvial floods occur in river valleys or flood

plains as a combined result of excess rainfall not being able to infiltrate into the soil,

and the channels capacity to convey this water being exceeded (World Meteorologi-

cal Organization, 2011). Heavy rainfall from convective, stratigraphic and orographic

events can lead to fluvial flooding. Melted water from areas containing high levels

of snow can also lead to fluvial flooding. However this is not a focus of this thesis.
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Estuarine flooding occurs around river deltas and is caused by the combined effect of

fluvial flows meeting coastal tides. Urban floods occur in developed areas that have

large quantities of impervious surfaces. They are largely influenced by rainfall in-

tensity, the connection of impervious areas to the drainage system ,and the capacity

of the drainage system. The devastation of many coastal cities by urban flooding can

be magnified by the combined effects of estuarine and/or coastal flooding. Whilst

still occurring in coastal areas, coastal floods are distinguished from estuarine floods

by the mechanism that generates them. The combination of high tides with storm

surges such as those that occur in cyclonic regions produce coastal floods.

2.1.1 Value of flood forecasts

Timely, accurate and precise flood forecasts are critical, in the context of a natural dis-

aster the value of information depreciates with time. Consequently, in operational

settings progressive forecasts and warnings are issued. The Australian Bureau of

Meteorology (BoM) issues less informative flood watches with long lead times when

there is a significant chance of a flooding event. More detailed flood warnings are

issued closer to the event (Emergency Management Australia, 2005).

Difficulties associated with longer term weather forecasts contribute to lower con-

fidence levels prior to an event. In the time leading up to an event, rainfall and

streamflow forecasts progressively become more reliable. Martina et al. (2006) pro-

posed that flood damage perceived by stakeholders can be modeled by a cost func-

tion. No actual value is attributed to the cost function as it is an amalgamation of

economic, social and environmental loss. The cost function is represented by

U(q) = C0 +
a

1 + b exp−c(q −Q?)
, (2.1)

where the flood damage U is a function of the flood volume or extent q. Parameters

a, b and c dictate the shape of the cost function. Q? is the critical threshold flood

volume or extent upon which if q is in excess the flood damage grows and C0 is the

minimum damage perceived by the stakeholders for which it is necessary to issue
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a flood watch or warning. For this cost function it is assumed that the flood vol-

ume or extent being forecasted is the same as that which is observed. This function

and its relation to the timing of a flood watch or forecast being issued is depicted in

Figure 2.1. It can be seen that there is a cost associated with flood watches and warn-

ings being issued for flows below the critical threshold. Where as for flows above

the critical threshold it becomes increasingly important to issue flood watches and

warnings with larger lead times. If the accuracy and precision of the flood watches

and warnings is not sufficient then the damage incurred is likely to increase for all

flood volumes and extents.

FIGURE 2.1: The flood damage cost function where the solid line de-
picts damage for floods in which no flood watch or warning is issued,
the and −− lines depicts damages incurred for when flood watches
or warnings are or are not issued respectively. Adapted from Martina

et al. (2006)

2.1.2 Flood forecasting models

For many catchments, the antecedent soil moisture conditions play a large role in

the partitioning of incident rainfall into flow types. Due to difficulties in the spec-

ification of antecedent soil moisture it is often difficult to determine precisely how

a catchment will respond to incident rainfall. For operational flood forecasters the
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correct specification of the initial soil moisture conditions at the beginning of a rain-

fall event is of critical importance. Since event-based models can easily be cali-

brated to individual storms as they progress the BoM currently prefer to use an

event-based modeling approach in preference over a continuous based modeling

approach. However, it has been shown (Pauwels et al., 2001; Berthet et al., 2009) that

accounting for antecedent soil moisture conditions in a continuous based model-

ing approach can lead to increased streamflow forecasting performance. Improving

the accuracy and precision of QPFs will allow correctly implemented continuous

rainfall-runoff models to better forecast the initial soil moisture state. This will pro-

vide increased lead time and add value to flood forecasts, a critical piece of informa-

tion for emergency services (Cloke and Pappenberger, 2009).

2.2 Hydrological uncertainty analysis

When discussing hydrological uncertainty analysis it is important to not only con-

sider all components that contribute towards total uncertainty but also how they

relate to each other. It is particularly important to distinguish the random aleatory

uncertainty that is present in our observations from the epistemic uncertainty that

results from a lack of knowledge of the underlying processes. The dominant sources

of uncertainty that are present in hydrological modeling are those arising from, forc-

ing data, model parameters, model structure, state estimation, model output, and

the data being calibrated against. Consequently, this section discusses uncertainty

in parameter estimation, model structure state estimation, forcing data, and calibra-

tion data.

2.2.1 Parameter estimation

Parameter estimation is the field of research that searches for optimal parameter

set/s. Equifinality (Beven, 2006) dictates that for a given set of forcing and calibration

data there may exist multiple models and model parameter sets that each present

equally plausible final simulations. Keeping equifinality in mind, parameter estima-

tion algorithms have taken advantage of the advancement of computational power
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and moved away from deterministic solutions and towards stochastic solutions that

describe a posterior parameter distribution.

Deterministic solutions (Duan et al., 1994; Gan and Biftu, 1996; Thyer et al., 1999) are

idealistic and believe that a unique solution can be obtained. They are focused on

finding a global optimum set of parameters through the determination of a global

optimum set of parameters for a given objective function. A pitfall of this approach

is that the parameter estimation algorithms often estimate parameters that perform

well in the model calibration period and poorly in the model evaluation period. Pap-

penberger and Beven (2006) debate the feasibility of determining an optimal parameter

set due to the quality and availability of data, model assumptions, current knowl-

edge, computational and time restrains or if it is a problem of equifinality (Beven,

2006).

The choosing of an objective function is quite subjective for both deterministic and

stochastic parameter estimation problems. Each objective function often leads to a

parameter set that is able to only partially describe the hydrologic system, perform

well in some catchments or flow situations and poorly in others. Thus deterministic

parameter estimation often leads to poor simulation of streamflow in forecasting sit-

uations. McInerney et al. (2017) evaluate eight common objective functions and make

recommendations for hydrologists based on the conclusion that no one function is

able to perform well for all performance metrics.

The aim of stochastic parameter estimation is to select all parameter sets that are able

to adequately describe the hydrologic system. Sampled parameter sets are ranked

based on a likelihood function, the effectiveness of which is dependent upon as-

sumptions made about the errors present in a model and observations (Vrugt, 2016).

Stochastic parameter estimation methods include: Bayesian recursive parameter es-

timation (Thiemann et al., 2001), the limits of acceptability approach (Beven, 2006;

Blazkova and Beven, 2009), the BAyesian Total Error Analyis (BATEA) framework

(Kavetski et al., 2006a,b; Kuczera et al., 2006; Thyer et al., 2009; Renard et al., 2011),

the Simultaneous Optimization and Data Assimilation (SODA) (Vrugt et al., 2005),

the Differential Evolution Adaptive Metropolis (DREAM) algorithm and its vari-

ations (Vrugt et al., 2005, 2008, 2009a,b; Vrugt and Ter Braak, 2011; Laloy and Vrugt,
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2012; Sadegh and Vrugt, 2014), Bayesian model averaging (Butts et al., 2004; Ajami

et al., 2007; Vrugt and Robinson, 2007), the hypothetico-inductive data based mecha-

nistic modeling framework of Young (2013) and Bayesian data assimilation (Bulygina

and Gupta, 2011). A major advantage of stochastic parameter estimation methods

is that, if input is represented as parameters, hydrologists are able to explore input

uncertainty. A few studies have focused on elucidating the link between parameter

estimation and input error. It is likely that when combined with efforts to constrain

state estimates that these techniques will become more valuable.

2.2.2 Model structure

Hydrological models can be used for simulation of rainfall-runoff events, projec-

tion of future scenarios, forecasting future events and hind-casting previous events

(Beven and Young, 2013). A projection may be thought of as a “what if” scenario,

e.g. what are water storages expected to look like under severe drought or flood

conditions, whereas a forecast is the prediction of behavior that is likely to occur

given current conditions. Hind-casting of events is used to evaluate the usefulness

of a model for a future forecasting scenario. Modelers use ex-post and ex-ante hind-

casting for evaluating respective events where it is assumed that either “perfect input”

or forecasted data are available (Young, 2013), respectively.

No one rainfall-runoff model is able to perfectly deal with every catchment or flow

event. It is therefore necessary to understand the variety of models available and

their limitations. Models are categorized based on how their structures deal with

space, lumped or distributed; how model states are treated, event-based (static) or

continuous (dynamic); modeling philosophy, deterministic or stochastic; and how

they are formulated, inductively or deductively (Beven and Young, 2013). Some mod-

els are distributed only at areas of key interest, while some may be partially deduc-

tive and utilize a more detailed inductive approach for perceived critical processes.

Quite often models are purpose built, e.g. some are more appropriate in a scien-

tific research setting whilst others an operational setting (Moradkhani and Sorooshian,

2008).
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System identification extends the concept of equifinality to allow for not just more

than one viable parameter set for a model but to allow for a range of models each

with numerous parameter sets being able to describe a hydrologic system. Thus it

is now commonplace for multiple models to be considered in a model averaging

scheme. Model averaging schemes assign weights to different models with the aim

to exploit the fact that some models will outperform other models in different flow

scenarios, lending credibility to the idea that different models will be more or less

suitable for streamflow simulation in different catchments and for different events.

Thus, the averaging of models allows for more robust streamflow predictions and

estimation of uncertainty. A shortcoming of model averaging techniques is the lack

of distinction between input errors and model structure.

2.2.3 State estimation

The process of state estimation involves simulated model states being updated with

observational data. The underlying assumption being that model states have been

incorrectly simulated due to some combination of errors in forcing data, initial con-

ditions and model structure. Consequently simulated model states are updated with

observations of those states. Alternatively, states can be updated based on their

ability to simulate the desired output data. Commonly used data assimilation tech-

niques include, direct insertion (Heathman et al., 2003), Newtonian nudging (Houser

et al., 2001; Pauwels et al., 2001; Paniconi et al., 2003) optimal interpolation (Seuffert

et al., 2004) Kalman filtering (Galantowicz et al., 1999), Kalman smoothing (Dunne and

Entekhabi, 2005; Li et al., 2013) and variational data assimilation (Castelli et al., 1999).

The complexity, and consequently applicability of these techniques differ greatly. In

some situations directly inserting observations in place of states may suffice, more

detailed problems may require an update of states that balances the observations

and states and their expected errors. Lastly, the most complex problems may require

updating of states that considers errors in both past and present observations and

states.

Whilst not all assimilation techniques are derived from Bayes Law, the fundamen-

tal notion that the probability associated with a priori states can be improved upon,
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given new information, to form a posterior states is a central concept of data assim-

ilation. All data assimilation techniques either filter observations at a given time or

smooth observations over a given window of time and are selected for use based on

computational cost and the required level of complexity.

2.2.4 Forcing data

Forcing data for hydrological rainfall-runoff models are largely comprised of pre-

cipitation and potential evapotranspiration PET data. This study will focus on pre-

cipitation or more specifically rainfall data. Studies (Oudin et al., 2005; Samain and

Pauwels, 2013) have shown that streamflow simulations from rainfall-runoff mod-

els are relatively insensitive to more detailed temporal variances in PET data when

compared to temporal variances in precipitation data.

Precipitation is the collective term for drizzle, rain, sleet, snow, graupel and hail.

Whilst all of these forms of precipitation may make their contribution to runoff, this

study focuses on rainfall, the primary forcing of fluvial flooding. Research into the

science of rainfall is divided into three main areas; rainfall microphysics, rainfall

measurement and estimation, and statistical analysis.

The microphysics concerning rainfall involves understanding the forces that shape

a raindrop, its chemical composition, oscillations that raindrops undergo when ap-

proaching terminal velocity and the drop size distribution (DSD) of raindrops within

a hydrometeor (Gebremichael and Testik, 2010). A good understanding of rainfall mi-

crophysics and when certain behavior is most likely to occur is particularly pertinent

for the accurate estimation of rainfall via microwave remote sensing.

In order to effectively estimate rainfall it is important to gain an understanding of

the different mechanisms behind rainfall. Stratiform rainfall occurs when different

pressure systems meet, consequently stratiform rainfall intensity is quite often uni-

form over a large spatial area and has the best forecast accuracy. Convective rainfall

occurs due to localized heating of the Earth’s surface via radiation from the sun.

Convective events most often occur in summertime and equatorial regions, are of-

ten difficult to predict, and are characterized by short intense rainfall events. The
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last rainfall mechanism is orographic. Orographic rainfall is caused by masses of air

being pushed up topographical land formations by wind fronts. Hence the direction

of wind and the presence of any shielding can have a large impact on orographic

rainfall events. Orographic rainfall events generally form around mountainous re-

gions, may be localized to small areas, and have varying levels of prediction accu-

racy (Testik and Gebremichael, 2010).

The most common rainfall measurement techniques in use today are tipping bucket

gauges, ground based radar and satellite. Acknowledged systematic errors for tip-

ping bucket gauges include but are not limited to; site selection, light rainfall and

splashing, and insufficient spatial density. Rainfall measurement via the use of a

tipping bucket is generally considered to be the most accurate (Habib et al., 2013).

Without sufficient density of rain gauges, recording of rainfall intensities and their

corresponding maxima and minima may be missed. This may potentially dampen

or magnify the simulated hydrograph response. Consequences of this are less sig-

nificant for stratiform rainfall events than orographic and convective rainfall events.

Rainfall estimation via microwave remote sensing, using ground radar or satellite,

provides additional spatial resolution. However, even after careful bias removal and

calibration, ground based microwave remote sensing estimation of rainfall may have

large inaccuracies due to bright band reflection, distance, shielding, insufficient sam-

ple size and rainfall being measured at the hydrometeor rather than catchment sur-

face (Seo et al., 2013). Further, difficulties may be seen in satellite rainfall estimation

due to the temporal repeat at which a satellites passes over a catchment. Depend-

ing on catchment characteristics, both spatial and temporal averaging of rainfall can

lead to difficulties when simulating or forecasting streamflow. For this reason it has

been proposed that rainfall should be given a more rigorous uncertainty treatment

(Pappenberger and Beven, 2006).

QPFs are most reliable for macroscale events. Increased confidence in a QPF can

also obtained by using an ensemble of weather predictions. Originally formulated

by Bowler et al. (2006) and developed by the UK Met Office and the Australian BoM,

the Short Term Ensemble Prediction System (STEPS) has been enhanced by Seed et al.

(2013) to include multiple QPFs and account for radar observation error. STEPS
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uses a decomposition framework to extrapolate radar nowcasts out to a QPF. As

will be discussed later, skill can be added to QPFs by processing with rain guage

measurements.

2.2.5 State data

For a lot of catchments soil moisture content dictates how rainfall becomes runoff.

Soil moisture measurements can be used in the calibration of rainfall-runoff models

to ensure that the model is able to represent the catchments soil dynamics. Unfor-

tunately, doing so often leads to the rainfall-runoff model not being able to simu-

late streamflow as well as it does when only streamflow data is used for calibration

(López et al., 2017). Alternatively, Alvarez-Garreton et al. (2015) have demonstrated

that the assimilation of soil moisture measurements into a distributed rainfall-runoff

modeling scenario can have positive impacts on the simulation of streamflow. Soil

moisture data are obtained via in situ measurements or remotely sensed satellite

measurements. In situ measurements have a high level of accuracy, are able to con-

tinuously measure soil moisture at depth, yet typically are unable to provide ob-

servations that are representative of the catchment. Conversely, at the expense of

spatial variability, remotely sensed satellite soil moisture products are able to pro-

vide observations that are representative of catchment soil moisture. Consequently,

in situ soil moisture observations are used to calibrate and evaluate remotely sensed

soil moisture products (Albergel et al., 2012). Unfortunately, the penetration depth of

satellite soil moisture observations is restricted by the wavelength of the instrument

used. For satellites with sensors that operate in the L-band and C- or X-band, soil

moisture can be observed for the near surface layer of 0-5 cm or 0-2 cm, respectively

(Yee et al., 2017). The revisit time of the satellite restricts the collection of observations

to every few days. A review of the applications of remotely sensed soil moisture to

rainfall-runoff models is provided by Li et al. (2016).
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2.2.6 Calibration data

Streamflow or river discharge data are used in a calibration period to test model ef-

fectiveness and calibrate their parameters, with the aim being superior performance

to other models and parameter sets in the calibration and independent evaluation

periods. It is also possible for streamflow data to be used for state estimation. As is

the case in many hydrological studies, this study assumes that uncertainty in stream-

flow measurements can be considered negligible when compared to other sources of

uncertainty. It is however important to acknowledge that possible errors may arise

from the changes in roughness arising from vegetation, the interpretation of river

stage height, the interpolation and/or extrapolation from a rating curve and/or un-

steady flow conditions (Di Baldassarre and Montanari, 2009).

2.3 Rainfall estimation

Despite the vast amount of literature on rainfall measurement (Testik and Gebremichael,

2010) and quality control procedures ( World Meteorological Organization, 2008), a

shroud of uncertainty still surrounds how rainfall should be used in rainfall-runoff

modeling. Following the general review of the inherent sources of uncertainty present

in rainfall-runoff modeling this chapter will now narrow the focus towards model-

ing methods that have been used to estimate rainfall and its uncertainty.

Drawing on the philosophy of the famous physicist Neils Bohr, as quoted by Petersen

(1963), “it is wrong to think that the task of physics is to understand how nature is, physics

concerns what we can say about nature”, would suggest that it is folly to think, as hy-

drologists, that the rainfall-runoff process can be understood. Instead of focusing on

a complete understanding of the rainfall-runoff process, hydrological observations

should be used to determine what can be said about the rainfall-runoff process.

Further, it was stated by Einstein et al. (1935) that “ If, without in any way disturbing

a system, we can predict with certainty (i.e., with probability equal to unity) the value of

a physical quantity, then there exists an element of physical reality corresponding to this

physical quantity”. So how far can the frequency and quality of hydrometeorological
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observations be advanced without significantly altering the system? Is there a point

of diminishing return? Given current observations, what can be said about rainfall?

Is it best to use catchment average rainfall rate or a rainfall rate that is consistent

rainfall derived from observed streamflow and soil moisture?

2.3.1 Streamflow

The response of a catchment to rainfall is determined, to varying extents, by Hor-

tonian overland flow, saturation excess overland flow, interflow and groundwater

flow. The time differential between peak rainfall and the resulting peak streamflow

is referred to as lag. The lag process is often mathematically simulated by unit hy-

drographs and/or sequential filling and emptying of a series of reservoirs, otherwise

known as a Nash cascade (Li et al., 2013). Due to complex interactions involved in

each of these processes, discrepancies are quite often noticed between similar rainfall

events and the corresponding runoff. Hence the process of retrieving rainfall from

streamflow observations is considered an ill-posed problem. Most hydrologists fa-

vor deterministic models (Pappenberger and Beven, 2006). Consequently attempts to

retrieve rainfall from runoff have taken a deterministic approach.

In perhaps the earliest example of rainfall retrieval from streamflow Hino (1986) sep-

arated time series of daily discharge into their respective runoff components using

coefficients obtained by fitting an Auto-regressive Moving Average model to stream-

flow data. Streamflow components were separated based on abrupt changes of auto-

correlation coefficients. The runoff components were then routed to produce rainfall

estimates using unit hydrographs. The results found by Hino (1986) indicate that

this process is able to achieve achieve results that agree relatively well with gauged

rainfall data.

In an attempt to produce robust streamflow simulations, deductive hydrologic mod-

els have often been developed with Occam’s Razor in mind; also known as the law

of parsimony, i.e. “Entities should not be multiplied unnecessarily”. Perhaps the best

test for parsimony is the potential for a model to be analytically inverted to obtain

rainfall rates from streamflow. Kirchner (2009) used a first order approximation to
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solve the water balance equation.

dS

dt
= Pt − Et −Qt, (2.2)

where dS/dt [l3/s] is the change in the total volume of water stored in the catch-

ment and Pt [L/s], Et [L/s] and Qt [l
3/s] are the rates of precipitation, evapotran-

spiration and discharge respectively. The success of this approach relies on the as-

sumption that streamflow is largely dependent upon change in storage. Using this

assumption, a sensitivity function which describes the change of flow with respect

to a change in storage can be formulated as

g(Q) =
dQ

dS
=

dQ/dt

Pt − Et −Qt
. (2.3)

Consequently, catchments with a significant proportion of impermeable surface or

are highly saturated are unlikely to yield meaningful results. The sensitivity func-

tion, g(Q), can thus be best estimated when Pt − Et � Qt, i.e. when the only con-

tributions to streamflow are interflow and baseflow. An example of when this may

occur is at night when it is not raining and evapotranspiration rates are low or zero.

Using this sensitivity function both evapotranspiration and precipitation are esti-

mated via

Pt − Et =
Qt+`+1 −Qt+`−1/2

g(Qt+`+1)− g(Qt+`−1)/2
+Qt+`+1 −Qt+`−1/2. (2.4)

where ` [s] represents the time lag between precipitation and the observation of

streamflow. One shortcoming of the approach taken by Kirchner (2009) is that the

lag is given a fixed approximate value. Depending on the catchment, lag can be a

highly dynamic parameter. Smoothing (Li et al., 2013) and some data based mech-

anistic models pay significant attention to lag. Often overlooked by hydrologists,

Kirchner (2009) draws attention to the fact that, of the components of the water bal-

ance, only streamflow can be considered a catchment scale observation.

Using a different framework Kavetski et al. (2006a) and Vrugt et al. (2008) used an

alternative approach to simplifying the water balance and chose to represent true
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catchment rainfall and its associated uncertainty using parameters. One parame-

ter or rainfall multiplier was assigned to each storm event. Taking advantage of

an effective stochastic sampling algorithm and a likelihood function that considers

streamflow and rainfall, the reduction of storm events to rainfall multipliers allows

hydrologists to jointly estimate hydrologic model parameter distributions as well as

input rainfall and its uncertainty. Kavetski et al. (2006a) and Vrugt et al. (2008) deter-

mined that there was sufficient data to estimate both hydrological model parameters

and rainfall input. The reduction of input data using mathematical transforms offers

an alternative to the storm multiplier method that provides the potential to reduce

the dimensionality of the parameter estimation problem, thus enabling a more ro-

bust inference. Signal transforms, such as Fourier and wavelet transforms, are ex-

amples of data reduction transformations that have been applied in hydrology. Yet,

not for data reduction purposes, their suitability to reduce hydrological input data

has not been assessed to date.

Rainfall estimation methods that use streamflow measurements as the main input

towards inverting the water balance are able to maintain good resolution in the time

domain. They yield good results for catchments with simple dynamical systems that

exhibit linear behavior. Conversely they perform poorly for complex catchments

that exhibit highly nonlinear rainfall-runoff behavior. Renard et al. (2010, 2011) built

on the idea of using storm multipliers by characterizing the storm multipliers with

a hyper-distribution. The use of informative priors for the storm multipliers ensures

that the sampled multipliers remain realistic and convergence is able to be achieved.

The storm multiplier method assumes that a multiplicative error structure is ap-

propriate for rainfall. A pitfall of this assumption is that poorly gauged catchments

often overestimate, underestimate or completely miss localized rainfall events. Thus

it is imperative that the development of any rainfall estimation method allows for

rainfall to be estimated even when none was observed. When compared to storm

multipliers, the reduction of rainfall by transfer functions allows for rainfall to be

estimated when no rainfall was recorded at the gauge.



2.3. Rainfall estimation 23

2.3.2 Soil moisture

The root zone soil moisture state has a large impact on a catchment’s rainfall-runoff

characteristics (Grayson et al., 2006) and typically governs the proportion of rainfall

that is available to contribute to surface and subsurface flows (Tebbs et al., 2016).

Consequently there is much that can be learned from analysis of the interactions be-

tween rainfall and soil moisture (Kucera et al., 2013). As coined by Brocca et al. (2014),

the notion of using ‘Soil as a Natural Rain Gauge’ has gained traction. Methodologies

to extract informative rainfall data from soil moisture observations have predomi-

nantly taken one of two approaches. Either updating satellite based rainfall products

using changes in relative soil moisture or extracting rainfall data from soil moisture

using approximations to the water balance. With the continued support and im-

provement of satellite rainfall and soil moisture measurement missions such as the

Global Precipitation Measurement (GPM) mission and the Soil Moisture Active Pas-

sive mission (SMAP), it is expected that the value of methods outlined by Crow et al.

(2011) and Brocca et al. (2014) will become more valuable.

Taking the first approach Crow (2007) used a Kalman filter based updating scheme

to develop a Soil Moisture Analysis Rainfall Tool (SMART) (Crow et al., 2009, 2011)

which uses remotely sensed soil moisture observations to update an Antecedent Pre-

cipitation Index (API) model forced by satellite rainfall. The innovations from the

updating scheme showed correlation with the errors between the observed satel-

lite based rainfall and a high quality gauge based rainfall product. This updating

scheme relies on the assumption that the observed soil layer is able to remember

past rainfall and will be most accurate when rainfall events occur immediately prior

to the acquisition of a remotely sensed soil moisture image. As the time difference

between the rainfall event and soil moisture observation increase the assumption

that losses due to percolation and PET are negligible becomes less valid. Further, this

methodology is most appropriate for catchments or rainfall events in which minimal

surface flow occurs. Enhancements were made to earlier versions of the SMART by

addressing seasonal fluctuations, conditioning of rainfall forecasts, filter calibration,

accounting for non Gaussian errors, PET and temperature influences, as well as co-

variance with adjacent grid cells, and drainage rate. Also, using remotely sensed soil
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moisture observations to correct satellite based rainfall estimates Pellarin et al. (2008)

demonstrated that soil moisture observations can be used to suppress satellite based

rainfall observations that were not observed by ground based rainfall gauges. Pel-

larin et al. (2009, 2013) also demonstrated that the satellite based rainfall estimates

can be used to add value to the remotely sensed soil moisture observations.

The second methodology builds upon the seminal work conducted by Kirchner (2009)

on catchments as simple dynamical systems. Instead of correcting satellite rainfall

observations, the Soil Moisture to Rain (SM2RAIN) algorithm (Brocca et al., 2014)

makes simplifications to the soil water balance equation to allow for the direct esti-

mation of rainfall from the knowledge of relative soil moisture. A major assumption

is that all rainfall infiltrates. Ciabatta et al. (2015) uses the SM2RAIN algorithm to

nudge satellite precipitation estimates in order to estimate daily rainfall; Abera et al.

(2016) evaluated this product in a comparative study. The inversion of soil mois-

ture data to estimate rainfall depends on knowledge of the relative change of soil

moisture and the runoff flow rate

Z(L)
ds(t)

dt
= p(t)− r(t)− e(t)− g(t), (2.5)

where Z(L) [m] is the soil layer depth, ds(t)/dt [t−1] is the change of relative satu-

ration of soil with respect to time, p(t) [L · s−1] and e(t) [L · s−1] are the intensity of

precipitation and evapotranspiration, whilst r(t) [L · s−1] and g(t) [L · s−1] are the

runoff and drainage flow rates. It is assumed that all precipitation infiltrates into

the soil and consequently the runoff rate is zero. When precipitation occurs evap-

otranspiration is assumed negligible. Drainage to groundwater stores is expressed

as

g(t) = as(t)b, (2.6)

where a [L · s−1] and b [−] are the only two parameters that need calibration. Conse-

quently, the formula that is used to describe the retrieval of rainfall from soil mois-

ture is

p(t) ' Z(L)ds(t)
dt

+ as(t)b. (2.7)

In contrast to the SMART algorithm, each individual grid cell is able to be calibrated
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according to the dominant soil characteristics. Similar to SMART, the performance

metrics are based on the False Alarm Ratio (FAR), Probability of Detection (PoD),

Threat Score (TS), and Root Mean Square Error (RMSE).

The SM2RAIN tool has been evaluated using the Advanced Scatterometer (ASCAT),

Advanced Microwave Scanning Radiometer - Earth observing system (AMSR-E)

and Soil Moisture and Ocean Salinity (SMOS) products against the Tropical Rainfall

Measurement Mission (TRMM)-3B42RT product using the Global Precipitation Cli-

matology Centre (GPCC), Global Precipitation Climatology Project (GPCP) and Eu-

ropean Centre for Medium-range Forecasts (ECMWF) Re-Analysis Interim (ERAI)

products as benchmark data sets. The AMSR-E and TRMM-3B42RT rainfall esti-

mates showed similar results, whilst ASCAT and SMOS products produced inferior

rainfall estimates.

If rainfall estimates that are based on a satellite soil moisture product are to be used

in a flood forecasting situation, it is imperative that the rainfall estimate is up to

date and that the satellite soil moisture images are obtained immediately prior to

the flood. With the continued improvement of satellite rainfall and soil moisture

measurement missions, such as the GPM mission (Hou et al., 2014) and the SMAP

(Entekhabi et al., 2010) mission, it is expected that the methods outlined by Crow et al.

(2011); Brocca et al. (2014) and Ciabatta et al. (2015) will become more valuable for

estimating rainfall time series in the future. Yet, there are currently no methods that

use both streamflow and soil moisture to estimate rainfall.

2.3.3 Processing of quantitative precipitation forecasts

As a precursor for flood forecasting QPFs are developed and used as a forcing for

hydrological models. If an ensemble QPF is used the modeler runs the risk of fore-

casting median flows in adjacent catchments rather than a flood in one catchment

and low flow in the other catchment. Thus, the Schaake Shuffle (Clark et al., 2004) was

developed to preserve historical spatial and temporal patterns between a given QPF

and observed rainfall at the gauge.
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It is common for QPFs to be processed using a two part probability model to correct

bias and variance. Logistic regression is used to determine the probability of rain-

fall occurrence, whilst a transformation function is used to normalize and model the

relationship between QPF and observed rainfall intensities (Robertson et al., 2013). A

deterministic QPF can be transformed into ensembles by stochastically adding Gaus-

sian noise to a least squares fit between observed and predicted rainfall. Robertson

et al. (2013) used a log sinh transformation within a Bayesian Joint Probability (BJP)

framework to process a deterministic QPF before using the Schaake Shuffle to develop

a spatially and temporally correlated QPF that is more skillful than the QPF that it

was made from.

2.4 Knowledge gap

This literature review has explored key studies pertinent to flood forecasting, hy-

drological uncertainty analysis, and rainfall estimation methods. The three gaps in

literature to be explored throughout this thesis are;

1. the lack of methods to effectively reduce rainfall data to a small number of

parameters for estimation,

2. the estimation of rainfall data using transforms that account for an entire rain-

fall series through model inversion techniques using streamflow data, and

3. the ability to constrain rainfall estimates obtained through model inversion

with soil moisture data.

There have been a number of studies dedicated to estimating rainfall from stream-

flow observations. An extension of these studies was to use streamflow observations

and model inversion techniques to infer rainfall uncertainty. Doing so required in-

put rainfall data to be characterized by a set of parameters. Early approaches applied

a storm multiplier to adjust the volume of storms. In consequent studies a rainfall

multiplier was applied to each observation and the distribution of rainfall multipli-

ers was estimated using hyper-parameters. Throughout these studies none of them

sought to determine the most efficient way to represent an entire rainfall time series
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for estimation purposes. The first research question of this thesis will address this

knowledge gap.

Research conducted in response to the first knowledge gap identifies a transform

that is effective at reducing hydrological input data to parameters. The application

of the identified transform as a model input data reduction technique for the estima-

tion of rainfall and its uncertainty forms the basis of the second knowledge gap. The

second research question for this thesis explored how the identified transform can

be best used to estimate an entire rainfall time series and its associated uncertainty.

Further, a common problem with methods that estimate rainfall and its associated

uncertainty using model inversion techniques is that the use of storm multipliers as-

sumes that there is no uncertainty in rainfall when none is observed. The exploration

of methods that estimate rainfall and its associated uncertainty using model inver-

sion techniques that do not assume there is zero uncertainty in rainfall when none

is observed is another knowledge gap that was addressed by the second research

question.

The literature review revealed that there have been a number of studies that have

attempted to estimate rainfall and its uncertainty through various model inversion

techniques. Further, soil moisture observations have been used to both constrain

satellite based rainfall estimates as well as estimate rainfall itself. The main obsta-

cles that are faced when attempting to estimate rainfall from streamflow data are

the complexities and non-linearities that soil moisture stores introduce. Conversely,

when estimating rainfall from remotely sensed soil moisture observations, insuffi-

cient resolution in the time domain is able to achieved. There are no studies in the

literature that have attempted to estimate rainfall and its associated uncertainty by

inverting streamflow observations and constrain those rainfall estimates by assim-

ilating remotely sensed soil moisture observations. Thus, the last knowledge gap

that is to be addressed in this thesis has been identified.
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2.5 Outline of approach

The main research objective of developing techniques to aid in the development of

a robust methodology to improve flood forecasting skill was realized through three

sequentially linked research tasks. Prior to estimating rainfall and its associated un-

certainty an efficient technique to reduce hydrological input data was identified. The

search for this formed the basis of the first research question. The second research

question focused on using the DWT as a model input data reduction technique for

the estimation of rainfall and its associated uncertainty in a complex catchment that

exhibits non-linear characteristics. The constraint of the rainfall estimates obtained

from inverting streamflow observations with remotely sensed soil moisture obser-

vations was the focus of the last research question.

2.5.1 Efficient techniques to reduce hydrological input data

Before input rainfall can be estimated using parameter estimation algorithms it is

necessary to determine an effective method to reduce hydrological input data into

parameters. In other scientific fields the DWT and DCT are two common transform

that are used to reduce input signals into parameters. Consequently it is asked;

1. Is the DWT or DCT most appropriate for reducing hydrological input data?

(a) Does either transform represent transient events better than the other?

(b) Does either transform represent seasonal patterns better than the other?

To effectively estimate rainfall using parameter estimation algorithms it is essen-

tial that rainfall is represented using the most effective parameters. As the DWT

and DCT are two transforms used for model input data reduction in other scientific

fields their ability to represent hydrological input data using as few parameters as

possible is evaluated. As the DCT is a Fourier based transform it is expected that it

is most applicable for rainfall time series that do not exhibit time specific informa-

tion. Alternatively, the DWT is expected to show promising results for rainfall time

series with irregular rainfall patterns. Due to the sinusoidal nature of the DCT it is

plausible that the DCT is able to represent seasonal patterns better than the DWT.
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The transform that was able to best preserve hydrological input data was used in

the rainfall estimation process.

2.5.2 Estimation of an entire rainfall time series using hydrological model

input data reduction

Once a suitable methodology to reduce hydrological input data to a small number

of parameters has been determined, its ability to be used in a rainfall estimation

scenario needs to be tested. Consequently, the basis of the second research question

is formed around the estimation of representative rainfall incident upon a catchment

using the DWT and model inversion techniques.

2. Can an increased understanding of hydrologic uncertainty be gained by esti-

mating rainfall from streamflow observations using the DWT and model in-

version techniques?

(a) Can uncertainty in rainfall events be estimated when no rainfall was ob-

served?

(b) Is there an upper limit to which incident rainfall can be estimated?

Regularization and linear inversion are the most commonly used techniques in liter-

ature to estimate rainfall from streamflow observations. Yet, due to the strong non-

linear behavior and the ill-posed nature of the problem it is expected that estimating

incident rainfall via the reduction of input rainfall to DWT parameters, to be solved

for in the estimation routine, and constraining rainfall estimations with a likelihood

function that considers both rainfall and streamflow will provide superior results.

It is expected that estimating the distribution of an entire rainfall time series will

capture subtle yet complex and indeterminate variations, both within a catchment

and between events. These variations are unable to be captured by methods that

only consider rainfall uncertainty when rainfall was observed. Thus, value will be

added to the understanding of rainfall and its temporal distribution. By including

the DWT parameters in the parameter estimation routine it is expected that uncer-

tainty in rainfall events will be able to be estimated even if rainfall was not observed.

It is expected that as more DWT parameters are estimated in the rainfall estimation
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process that a greater resolution and understanding of rainfall estimates and their

associated uncertainty will be able to be achieved. The use of an increased number

of DWT parameters in the estimation algorithm does however come at a cost. As

more parameters are used the computational requirements increase greatly. Conse-

quently the trade off between computational cost and increased resolution in rainfall

estimates will need to be optimized. In order to retrieve superior rainfall estimates

it is expected that more frequent streamflow measurements from the headwaters

of small flashy catchments and catchments that show minimal signs of dampening

will produce the best results. The estimation of input rainfall along with model pa-

rameters is expected to be comprised of some model structural errors. As such it

is expected that answers to the third research question will provide a step towards

untangling uncertainty in rainfall estimates and model structural errors.

2.5.3 Constraining rainfall estimates from model inversion using soil mois-

ture observations

Due to clear limitations involved with the determination of state variables, both

rainfall-runoff models and the inverse process of retrieving rainfall inputs from stream-

flow outputs can be thought of as ill-posed problems. Since good results have been

found when rainfall-runoff models have been constrained with soil moisture, it is

only natural to ask;

3. Using the results from 2.5.2, can rainfall estimates be constrained by soil mois-

ture observations?

(a) Using an EnKF, do innovations exhibit white noise?

(b) Does the assimilation of soil moisture observations provide an element of

physical realism to the rainfall retrieval process?

(c) Does the assimilation of soil moisture observations restrict the efficacy of

the rainfall retrieval process due to model structural inadequacy?
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Rainfall estimates from 2.5.2 were constrained by soil moisture observations using

an EnKF and the noise of the innovations were tested for whiteness. Due to the ad-

dition of good quality data it is expected that rainfall estimates will be meaningfully

constrained by soil moisture observations. Further, it is expected that only combina-

tions of rainfall estimates, model structure, model parameterization and soil mois-

ture observations that are in agreement with the physical ’truth’ will show similar or

improved capacity to model streamflow. Rainfall realizations that do not produce

white noise when soil moisture observations are assimilated and do not produce

streamflow within the bounds of uncertainty will be rejected.

2.6 Opportunities for utilization of research

Throughout this literature review areas have been highlighted that can contribute

to the scientific understanding and development of flood forecasting using remote

sensing data. Of particular importance to this study is the development and progres-

sion of flood forecasting skill. The optimal way to do this is to provide an increased

understanding of rainfall uncertainty and eventually rainfall forecasting skill. An

increase in rainfall forecasting skill will translate to an increase in flood forecasting

skill. Rainfall estimates will be gathered using a methodology that involves model

input data reduction, model inversion and data assimilation. The rainfall product

can then be used to post process QPFs before being used in an operational flood

forecasting scenario.
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Chapter 3

A comparison of the discrete cosine
and wavelet transforms for
hydrologic model input data
reduction

Overview

This chapter addresses the first research question by reducing rainfall data from the

MOPEX data set to DWT and DCT parameters. The parameters are compressed

before the rainfall observations are reconstructed. The reconstructed rainfall time

series are evaluated to determine which transform is most appropriate for reducing

hydrological input data. The findings of this chapter form the foundations for the

research presented in subsequent chapters.

This chapter is reproduced from an article published in Hydrology and Earth System
Sciences, An interactive open-access journal of the European Geosciences Union.
Under the Creative Commons Attribution 3.0 License the first author is granted the
permissions by the publisher, Copernicus to copy, distribute, transmit and adapt the
work so long as the original authors are given credit.

Citation: Wright, A., Walker, J. P., Robertson, D. E., and Pauwels, V. R. N.: A comparison
of the discrete cosine and wavelet transforms for hydrologic model input data reduction,
Hydrol. Earth Syst. Sci., 21, 3827-3838, https://doi.org/10.5194/hess-21-3827-2017, 2017.
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3.1 Abstract

The treatment of input data uncertainty in hydrologic models is of crucial importance in

the analysis, diagnosis and detection of model structural errors. Data reduction techniques

decrease the dimensionality of input data, thus allowing modern parameter estimation al-

gorithms to more efficiently estimate errors associated with input uncertainty and model

structure. The discrete cosine transform (DCT) and discrete wavelet transform (DWT) are

used to reduce the dimensionality of observed rainfall time series for the 438 catchments in

the Model Parameter Estimation Experiment (MOPEX) data set. The rainfall time signals

are then reconstructed and compared to the observed hyetographs using standard simu-

lation performance summary metrics and descriptive statistics. The results convincingly

demonstrate that the DWT is superior to the DCT in preserving and characterizing the ob-

served rainfall data records. It is recommended that the DWT be used for model input data

reduction in hydrology in preference over the DCT.

3.2 Introduction

Rainfall uncertainty is the biggest obstacle hydrologists face in their pursuit of accurate,

precise and timely streamflow forecasts (McMillan et al., 2011). Unfortunately, errors in rain-

fall time series data may lead to hydrological model parameter estimates that produce ad-

equate streamflow simulations only during the calibration period (Beven, 2006). This can

lead to poor-quality streamflow predictions for independent periods, and low confidence

in the ability of streamflow forecasts. Consequently, a precise and accurate representation

of rainfall uncertainty is paramount for robust hydrological model parameter estimation,

streamflow forecasting and quantitative precipitation forecasts (QPFs). Robertson et al. (2013)

and Shrestha et al. (2015) have demonstrated that skill can be added to QPFs by postprocess-

ing with past observations. As such, skill can be added to QPFs and consequently flood

forecasts, through developing a greater understanding of rainfall uncertainty.

The propagation of input errors in rainfall runoff modeling impedes the hydrologic com-

munity’s ability to validate model structural error. Despite the vast amount of literature on

rainfall measurement, estimation, statistical analysis (Testik and Gebremichael, 2010) and qual-

ity control procedures (World Meteorological Organization, 2008), a shroud of uncertainty still

surrounds how rainfall and its associated uncertainty should be addressed in rainfall runoff
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modeling. The implementation of uncertainty analysis in many hydrological applications is

also often limited by computational power.

Recent advancements in computational power as well as remote sensing have led to con-

siderable improvements in availability and quality of hydrological observations (Cloke and

Pappenberger, 2009). These improvements can be leveraged to increase the hydrological and

flood forecasting knowledge base and consequently provide water policy decision makers

and emergency management services with higher-quality information.

The advancement of computational power has also aided the search for hydrological model

parameters that optimally simulate hydrological observations. These approaches initially

focused on finding only the global optimum values of the parameters for a given objec-

tive function (Duan et al., 1994; Gan and Biftu, 1996; Thyer et al., 1999). However, in the past

two decades it has been recognized that the uncertainties in model parameters and predic-

tions need to be estimated. Methods that seek to estimate parameter and prediction uncer-

tainty include: Bayesian recursive parameter estimation (Thiemann et al., 2001), the limits

of acceptability approach (Beven, 2006; Blazkova and Beven, 2009), the Bayesian total error

analyis (BATEA) framework (Kavetski et al., 2006b,a; Kuczera et al., 2006; Thyer et al., 2009; Re-

nard et al., 2011), the simultaneous optimization and data assimilation (SODA) (Vrugt et al.,

2005), the DREAM algorithm and its variations (Vrugt et al., 2005, 2008, 2009a,b; Vrugt and

Ter Braak, 2011; Laloy and Vrugt, 2012; Sadegh and Vrugt, 2014), Bayesian model averaging

(Butts et al., 2004; Ajami et al., 2007; Vrugt and Robinson, 2007), the hypothetico-inductive

data-based mechanistic modeling framework of Young (2013) and Bayesian data assimila-

tion (Bulygina and Gupta, 2011). It is through the development of these parameter estimation

algorithms that hydrologists are able to explore input uncertainty.

Kavetski et al. (2006a) and Vrugt et al. (2008) identified the need to represent true catchment

rainfall and its associated uncertainty using parameters, both applied a parametric approach

to estimating true catchment rainfall and its associated uncertainty using a rainfall multiplier

to storm events. The use of a parametric representation of rainfall with an effective sampling

algorithm provides the ability to jointly estimate hydrologic model parameter distributions

as well as input uncertainty. As in most hydrological problems there is a lack of sufficient

data to obtain a unique solution. However, Kavetski et al. (2006a) and Vrugt et al. (2008)

found there were sufficient data to estimate both hydrological model parameters and rainfall

input. Data reduction transformations offer the potential to reduce the dimensionality of the

parameter estimation problem and thus enable a more robust inference. Signal transforms,

such as Fourier and wavelet transforms, are examples of data reduction transformations that
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have been applied in hydrology; however they have not previously been used to reduce the

dimensionality of input data.

Fourier transforms use sinusoidal functions to represent the spectral component of an input

signal; thus, a periodic signal could be represented using a smaller number of Fourier coeffi-

cients than the number of input data points. A pitfall of the Fourier transform is that it repre-

sents the spectral components of a signal, without any indication of the time localization of

those specific spectral components. In order to account for this, the windowed Fourier trans-

form (WFT), sometimes referred to as the short-time Fourier transform, segments the signal

into discrete time windows before performing the Fourier analysis. A major drawback to

this approach is that the uncertainty principle of signal processing imposes a limitation on

the time and frequency resolutions that can be obtained for a given signal. As a response to

this Daubechies (1990) produced discrete basis functions with good time and frequency local-

ization. In conjunction with the pyramid algorithm, as described by Mallat (1989), this work

formed the basis for multi-resolution analysis with the discrete wavelet transform (DWT)

(Polikar, 1999). The DWT decomposes an input signal into high- and low-frequency compo-

nents.

Wavelet analysis was first introduced to the geophysical sciences by Kumar and Foufoula-

Georgiou (1997) and has been adopted for several different applications. Wavelet analysis

has been used to assess the performance of hydrological models for parameter estimation

(Schaefli and Zehe, 2009) to analyze changes over different time periods for both streamflow

and preciptation data (Nalley et al., 2012). Various spectral methods have also been applied in

hydrology, including the application of discrete Fourier transforms to calibrate water and en-

ergy balance models (Pauwels and De Lannoy, 2011) and for the calibration of the conceptual

rainfall runoff model known as the probability distributed model (PDM) (De Vleeschouwer

and Pauwels, 2013). While wavelet and spectral methods have been applied in the hydro-

logical sciences, to date there have been no instances in which the suitability of different

transforms has been compared for hydrological data reduction applications. Labat (2005)

has pointed out that Fourier transforms and their derivatives are not well suited to recon-

struct hydrologic data, which are generated by transient mechanisms. This is due to the

Fourier transforms poor capability to represent sporadic high-frequency events when di-

mensionally reduced. If model input data reduction techniques are to be accepted by the

hydrologic community it is of critical important that the transform used is able to recon-

struct transient events. Through a comparative study it will be shown that DWTs are a good

multi-resolution alternative to the discrete cosine transform DCT.



3.3. Model input data reduction theory 37

Traditionally, transform coefficients are the result of a convolution operation on an input

signal. However, the aim of model input data reduction is to estimate these transform co-

efficients. Hence, they shall be referred to as transform parameters from herein. This paper

provides novel theoretical and numerical comparisons of the DCT and DWT in a hydrolog-

ical context. The ability of both transforms to reproduce key components of hydrological

data sets is investigated. The extent to which each transform can reproduce hydrologic data

using a decreasing number of parameters will serve as a metric upon which their ability to

be used as a tool for model input data reduction for hydrological data will be evaluated.

To address the requirements for hydrologic model input data reduction, this paper details

(i) theoretical differences between the DCT and DWT, (ii) methodologies to reduce input

rainfall to parameters, and (iii) an evaluation of the proposed methodologies using several

simulation performance summary metrics.

3.3 Model input data reduction theory

For this study, model input data reduction theory is introduced using a lumped conceptual

watershed model. Consider a nonlinear model F(·), which simulates n discharge values,

~̂Y = {ŷ1, . . . , ŷn} in mm day−1 according to

Ŷ = F(~θ, x̃0,
~̂
E,
~̂
R), (3.1)

where the model input arguments are the 1×d vector ~θ, with arbitrary model parameter val-

ues, the 1×m vector ~̃x0 with values of the initial states in millimeters, and the 1× n vectors

~̂E = {ê1, . . . , ên} and ~̂R = {r̂1, . . . , r̂n}which store the observed values of the potential evap-

otranspiration (PET) and rainfall in mm/day, respectively. Note that ~̂R is used to represent

rainfall and not precipitation, as snow, hail and other forms of precipitation are not consid-

ered. The (̂hat) symbol is used to denote measured quantities and the (̃tilde) symbol reflects

variables that are either reconstructed or could, in theory, be observed in the field but due to

their conceptual nature are difficult to determine accurately. If the traditional hydrological

perspective in which the inputs ~E and ~R are considered to be fixed and known quantities

is relaxed, and rainfall is now considered unknown, then a new inference problem arises

in which the input rainfall is estimated via the treatment of the input rainfall as a series of

parameters. Inference problems in which the input is considered unknown can be dealt with

using a Bayesian framework. Such inference problems have been considered by Kavetski et al.
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(2006b) and Vrugt et al. (2008) but are outside the scope of this paper. Consequently, for rain-

fall to be inferred a suitable parametric representation of rainfall must be determined. Given

a daily rainfall data record with n observations in millimeters, n rainfall parameters could

be used to represent the input hyetograph. This approach would be particularly elegant

and parsimonious. Yet, for a 10-year record of daily discharge data, the inference problem

would grow from d model parameters to roughly 10× 365+ d = 3650+ d parameters. These

values would need to be estimated from the observed rainfall and discharge data record,

respectively. As many hydrological models are already underdetermined the introduction

of additional parameters would make the model even less determinable. Additionally an

excessive amount of CPU time is required to solve for a 3600+ dimensional posterior param-

eter distribution. An alternative approach is therefore necessary. Sparse transforms convey

large amounts of data using fewer parameters than data points in the observed signal. An

input rainfall signal can be reduced to sparse transform parameters. Doing so allows mul-

tiple rainfall observations to be modified using a single parameter. Some or all of these

transform parameters can be altered before the transform is inverted to produce a new in-

put signal for streamflow simulation and posterior analysis. The use of sparse transforms

to represent input time series enables input uncertainty to be explored in great detail. The

ability of discrete wavelet and Fourier transformations to reduce hydrological input data to

a set of parameters for uncertainty estimation is compared using theoretical and analytical

methods.

3.3.1 Overview of the DCT and DWT

Wavelet and Fourier transforms are invertible transforms in which a forward convolution

operation can be used to decompose a signal into various components. Similarly, a back-

wards deconvolution operation can be applied to retrieve the original signal. Fourier-based

transforms decompose signals into frequency components and are best used for regular

time-invariant signals that do not exhibit time-specific information. Alternatively, wavelet-

based transforms decompose signals into frequency and time components. The advantage

of using wavelet functions to transform data is that time-specific information about when

higher frequency components occur can be preserved. To obtain time-specific information,

Fourier-based transforms can be applied over pre-specified temporal windows. Yet, this ap-

proach is limited by the uncertainty principle of signal processing. The uncertainty principle

of signal processing imposes a lower limit on obtainable resolutions in the time-frequency

domain such that
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σtσω ≥
1

2
, (3.2)

where σt (s) and σω (s−1) are the respective temporal and frequency widths used in the

sparse transform.

Applying the uncertainty principle of signal processing (Equation 3.2) it is clear that any

attempt to narrow the temporal period analyzed to gain increased resolution in the time

domain would be met by a widening of the frequency spectrum, and consequently a loss of

resolution in the frequency domain.

Considering that there is no time-frequency window that is able to obtain limitless resolution

in both the time and frequency domains, it is clear that an alternative solution must be found.

Wavelet transforms can be used to decompose a signal into different levels that consist of

different time and frequency resolution windows. Thus, the wavelet transform is able to be

configured to simultaneously obtain high levels of resolution in both the time and frequency

domains. For a more detailed discussion on wavelets and sparse transforms the reader is

referred to Mallat (2009).

3.3.2 Discrete cosine transform

The DCT (Ahmed et al., 1974) is a version of the WFT that has advantageous properties for the

field of data compression. Due to the boundary conditions of the cosine function, the DCT

is well suited to represent an observed input signal with a minimal number of parameters;

in this case rainfall, ~̂R(t). The DCT parameters ~p(i) are calculated as

~p(i) = w(i)

n∑
t=1

~̂R(t) cos

[
π

2n
(2t− 1)(i− 1)

]
, (3.3)

where i = 1, 2, . . . ,n and

w(i) =


1√
n
, i = 1√
2
n , 2 6 i 6 n.

(3.4)

The convolution process can be reversed to reconstruct the observed signal using the inverse

transform
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~̃R(t) =

n∑
i=1

w(i)~p(i) cos

[
π(2t− 1)(i− 1)

2n

]
, (3.5)

where t = 1, 2, . . . ,n.

3.3.3 Discrete wavelet transform

Using the pyramid algorithm, depicted in Fig 3.1, Mallat (1989) first described the decompo-

sition of an input signal into multi-resolution components using high- and low-pass filters.

Each stage of decomposition is referred to as a level. An advantage of using wavelets is that

decomposition can be performed using a variety of different wavelet families. This allows

for signals with differing properties to be analyzed using the same methodology. The most

commonly used wavelet family is the Daubechies wavelets (Daubechies, 1990). Each wavelet

within each family consists of a scaling h(m) and wavelet w(m) function, where m denotes

the length along the scaling and wavelet function. The scaling and wavelet functions are

used in the low- and high-pass filtering sequences, respectively. Whilst there are numerous

wavelet families that can be chosen for analysis, this study applies the most commonly used

Daubechies wavelets. Depending on the choice of wavelet stepwise convolutions of the in-

put signal are performed over the filter length L. jmax imposes an upper limit on the level of

decomposition j that a signal can be decomposed into, where

jmax =

⌊
log2

(
n + L− 1

2

)⌋
, (3.6)

in which b.c is the floor operator. The input signal is then convoluted by being passed

through high- and low-pass filters, where

~pL
j (i) =


∑L
m=1

~̃R(2i−m− 1)w(m), j = 1∑L
m=1 ~p

L
j−1(2i−m− 1)w(m), j > 1.

(3.7)

is the low pass and

~pH
j (i) =


∑L
m=1

~̃R(2i−m− 1)h(m), j = 1∑L
m=1 ~p

L
j−1(2i−m− 1)h(m), j > 1.

(3.8)
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FIGURE 3.1: A schematic showing the pyramid algorithm used to

decompose and downsample (↓ 2) an input signal ( ~̂R) into high-
and low-frequency components. The input signal is filtered using
the high- and low-pass filters described in Equations 4.6 & 4.7 be-
fore being downsampled to produce the level one high- and low-pass
parameters. The low pass parameters are now used as input for the
high- and low-pass filters. This process of filtering and downsam-

pling is repeated until the desired level of decomposition is met.

is the high pass, i = 1, . . . ,nj−1 + L − 1 and refers to the ith parameter, j = 1, . . . , jmax and

refers to the jth level, m refers to the mth filter coefficient. The resultant low-pass ~pLj (i) and

high-pass ~pH
j (i) parameters are commonly referred to as approximation and detail param-

eters, respectively. After the input signal is passed through the high- and low-pass filters

there is an issue of redundancy that needs to be dealt with. The filters split the input signal

into high- and low-frequency components that each contain roughly half the information of

the input signal. As the length of each of the resultant approximation and detail parame-

ter series is equivalent to the length of the input signal, each of the parameter series must
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be downsampled. The process of downsampling removes every other parameter. It is the

process of high- and low- pass filtering followed by downsampling that enables the DWT

to analyze multi-resolution components of a signal. After downsampling the length of the

resultant approximation and detail parameter series is

nj =


⌊

n+L−1
2

⌋
, j = 1⌊

nj−1+L−1
2

⌋
, j > 1.

(3.9)

where nj refers to the length of the series at the jth level. If further decomposition is required

the downsampled low-pass may be fed back into the filters until the resultant parameters can

no longer be split any further. An iteration of this process is shown in Fig 3.1. To reverse the

decomposition process and reconstruct a signal, upsampling is performed on the parameter

series before the lower level parameters are obtained through

~pj−1(i) =

b(L−1+i)/2c∑
m=di/2e

(
~pH
j (i)h(2m− i)

)(
~pj(i)w(2m− i)

)
, j > 1, (3.10)

where d.e is the ceiling operator and the input signal is reconstructed using

~̃R(i) =

b(L−1+i)/2c∑
m=di/2e

(
~pH
j (i)h(2m− i)

)(
~pj(i)w(2m− i)

)
, j = 1. (3.11)

3.4 Data

This study utilizes data from the Model Parameter Estimation Eperiment (MOPEX) data set.

The 10 years of rainfall data spanning the 1990s for 438 catchments in the United States of

America (USA) are used to compare the suitability of the DWT and DCT to represent rainfall

time series. The catchments used in this study were chosen to ensure they had sufficient rain

gauge density and represented a range of catchment sizes and climates. Rainfall for the Leaf

River catchment (Collins, Mississippi), a catchment that is frequently used for hydrological

studies (Sivakumar, 2001; Tang et al., 2006; Bulygina and Gupta, 2011), is used to compare the

DWTs’ and DCT’s ability to reconstruct high-magnitude rainfall events. A single rainfall

product for each catchment is used for analysis at a daily time step. A complete description

of the selection process and MOPEX data set is given by Schaake et al. (2006). No streamflow

data are used in the experiment.
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3.5 Experiment design

This experiment does not involve the use of any hydrological models. Due to this and the

nature of the transforms there are no calibration and evaluation periods. A major use of

both the DWT and DCTs has been in image compression consequently, the observed input

signals were compressed and decompressed using a methodology similar to that used in im-

age compression. In order to determine which transform’s parameters are able to effectively

store the most hydrological input data, both DWT and DCT parameters will be compressed

to varying extents for the MOPEX rainfall time series.

The process undertaken involves a number of steps. Firstly, before any compression is ap-

plied, the original rainfall signal for a given catchment is transformed into DCT and DWT

parameters using equations 3.3 and 3.4 and equations 3.7 to 3.9 for the DCT and DWT re-

spectively. Secondly, each transform is compressed by iteratively zeroing out parameters

that provide a low degree of information, these parameters are those closest to zero. A

threshold value T (mm) applies a lower limit, for which transform parameters above the

threshold are retained. This threshold is iteratively increased until the compressed trans-

form is composed of the desired number of remaining parameters k and percent of original

parameters POP is met.

POP(T ) = 100 ·
(
k

n

)
, (3.12)

where k becomes smaller as the threshold T increases and limT→∞ POP = 0. The next

step is to reconstruct the observed signal from the compressed transform parameters using

Equations 3.5 and 4.9 for the DCT and DWT respectively. After the reconstruction has been

performed, a comparison between the reconstructed and observed rainfall can be made.

Lastly, this process is iterated for different POPs as well as for each catchment within the

data set.

To provide a meaningful comparison between the DCT’s and DWT’s ability to reproduce dif-

ferent rainfall time series with an increasing POP, a number of simulation performance sum-

mary metrics are used. Following Moriasi et al. (2007), a combination of graphical techniques

and dimensionless and error index statistics that are widely accepted by the hydrological

community were adopted for model evaluation. The Nash-Sutcliffe efficiency (NSE) and the

root mean square error (RMSE) to standard deviation ratio (RSR) of the observed input sig-

nal (RSR = RMSE/σobs) are used to compare the performance of the reconstructed rainfall
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signal with the observed rainfall signal. Once the reconstructed signals are obtained, further

comparison with the observed rainfall will be made using the bias summary metric. The

variance, kurtosis and skewness of the reconstructed signals will be compared with those

of the observed signal. The bias is calculated as
∑n
t=1[

~̂R(t) − ~̃R(t)]/n, where ~̂R(t) and ~̃R(t)

are the observed and reconstructed rainfall signals, respectively. The reconstructed variance,

kurtosis and skewness are all normalized by the observed input signals variance, kurtosis

and skewness respectively. The peak error (PE) is the peak rainfall error over the 10-year

period. It is used to compare the reconstructed and observed signals for seasonal and flood

forecasting situations. The PE is normalized by the peak height of the observed input signal.

Further, the number of rain events missed is computed for each reconstruction by; flagging

original or reconstructed observations that exhibit no rainfall. Either the absolute difference

between the reconstructed and original observation is less than 0.01 or the ratio of the re-

constructed and original observation is equal to 0 or larger than 10. Lastly, reconstructed

rainfall using the DCT and DWT will be presented for the Leaf River catchment to compare

each transform’s ability to reconstruct high-magnitude rainfall events.

3.6 Results

Fig 3.2 shows the relationships between RSR and the number of transform parameters using

the DCT and DWT for three different catchments, Arroyo Chico, Skykomish River and Ohio

Brush Creek. These catchments represent the smallest, largest and mean rainfall volumes

for the MOPEX data set, respectively. It is clear that for all but the highest POP the DWT is

able to reconstruct the observed signal with lower RSR than the DCT and that as the rainfall

volume increases the RSR decreases. For intermediate POPs the DWT is able to reconstruct

the observed signal with significantly better RSR than the DCT. As the POP approaches both

100% and 0% there is little discernible difference between the DCT and DWT reconstructions.

By comparing the reconstructed DWT and DCT signals, using 20 POP and the observed

rainfall signal as a reference, a histogram for the NSE is shown for all catchments in Fig

3.3. Each frequency count in the histogram represents a catchment from the MOPEX data

set. The reconstructed DWT signals are clearly able to better simulate the observed rainfall

signal. All DWT reconstructed rainfall signals obtained a higher NSE than the DCT recon-

structed rainfall signals. Table 3.1 shows that as the transforms are compressed and fewer

parameters are used in the reconstruction, the mean NSE for the DWT stays much closer
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FIGURE 3.2: Empirical plots showing the relationship between RSR
and the POP used for reconstructing an input rainfall signal using the
DWT and DCT. The three catchments, from the top to the bottom of
the figure, represent the smallest, largest and mean rainfall volumes

throughout the 1990s for the MOPEX data set.

FIGURE 3.3: Histogram representing the reconstructed DWT (dark
bins) and DCT (clear bins) NSE when compared to the observed rain-
fall signal. Rainfall is reconstructed after the input signal is com-
pressed to 20 POP. Each frequency count represents a catchment

from the MOPEX data set.
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to the ideal value of 1 than the DCT. Further the standard deviation of NSE becomes much

TABLE 3.1: The mean and standard deviation (SD) of NSE for the
DWT and DCT using a different POP.

NSE DWT NSE DCT
POP Mean SD Mean SD
40% 0.988 0.007 0.918 0.010
30% 0.965 0.017 0.844 0.016
20% 0.905 0.036 0.729 0.025
10% 0.746 0.070 0.522 0.037

larger for the DWT.

Fig 3.4 compares the RSR for the DCT and DWT using four different POPs. A 1:1 line is

included in all subplots and each point represents a catchment from the data set. If the data

FIGURE 3.4: Comparative plots of RSR for the DCT and DWT using
a different POP. Each data point represents a catchment.

points fall above the 1:1 line, then for that catchment and POP the DWT is able to reconstruct

the input rainfall signal with lower RSR. Again it is found that DWT is always able to recon-

struct the original signal with lower RSR than the DCT reconstructions for all POPs. In a
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similar fashion to that discussed regarding Fig 3.2 it is observed that as the POP approaches

0% the difference between the DWT and DCT reconstructions becomes smaller.

The bias, variance and skewness observed in the reconstructed signals for each catchment

are shown in Fig 3.5 for different POPs. The DWT reconstructions are able to maintain a

FIGURE 3.5: Bias and normalized variance and skewness of the recon-
structed DWT and DCT signals for each catchment using a different

POP.

smaller bias than the DCT reconstructions at different POPs for all of the catchments. As

the POP decreases the bias becomes increasingly positive and negative for the DWT and

DCT, respectively. The distribution of the bias becomes more dispersed for both the DCT

and DWT as the POP decreases. The bias can be seen to be dependent on the transform

and POP used as well as the catchment being analyzed. Both the DWT and DCT never re-

construct the observed signal with greater variance than that of the observed rainfall signal.
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As the POP decreases the normalized variance for the DCT moves further away from unity

than the normalized variance for the DWT. The reduction in normalized variance means

that, as the POP decreases, both the DWT and especially the DCT reconstructions will have

fewer extreme values, when compared to the observed rainfall. The normalized skewness is

a measure of symmetry that describes whether or not the reconstructed signal is more posi-

tively skewed (more than 1) or less positively skewed (less than 1) than the observed input

signal. All of the reconstructed and observed signals had a positive normalized skewness.

When compared to the observed signal the DWT becomes increasingly skewed as the POP

is reduced. The opposite of this is observed for the DCT. This indicates that, when com-

pressed the DWT and DCT will reconstruct the observed rainfall signal with a greater and

lower number of values close to zero when compared to the observed signal, respectively.

This does not mean that the total volume will be any lower than the total volume of rainfall

observed. This is made evident by the low bias observed in Fig 3.5.

The normalized kurtosis and PE for all catchments using different POPs are shown in Fig

3.6. The measure of kurtosis describes how much the fraction of the distributions variance

is explained by extreme deviations. Consequently, a normalized kurtosis value larger than

1 indicates that the reconstructed signals variance is explained more by extreme deviations

than the observed input signal. This is likely to be the result of more rainfall values being

reconstructed at the extremities than those of the observed rainfall series. A value smaller

than one indicates that the variance is described less by extreme deviations than the ob-

served input signal. Similarly, this is likely to be the result of fewer rainfall values being

reconstructed at the extremities than those of the observed rainfall series. It is worth noting

that a reconstructed time series can have the same variance yet different kurtosis than the

observed rainfall time series. As the POP decreases, the dispersion of normalized kurtosis

and skewness increases, and the normalized kurtosis and skewness for the DWT and DCT

reconstructions become larger and smaller than unity, respectively. With decreasing POP

the normalized PE for the reconstructed DWT signal remains small and relatively consistent

when compared to the normalized PE for the reconstructed DCT signal.
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FIGURE 3.6: Normalized kurtosis of the reconstructed DWT and DCT
signals and percentage PE for the reconstructed DWT and DCT sig-

nals for each catchment using a different POP.

3.7 Discussion

Fig 3.3 shows that the DWT and DCT are able to reconstruct the observed input signals with

good efficiency using 20 POP. However, the DWT consistently outperforms the DCT. Fig

3.2 shows that as the POP decreases from 100% the DWT is able to reconstruct the input

signal with increasingly lower RSR than the DCT, the gap in performance is largest for 40

POP. As the POP continues to decrease towards 0%, the gap in RSR reduces to zero. It is

interesting to note that the DWT perfectly reconstructs the observed rainfall signal with as

many parameters as there are rainy days whereas the DCT does not.

As the bias for the DWT is consistently close to zero, the use of the DWT for rainfall input

data reduction is likely to be beneficial for hydrologic studies that have short time steps and

involve rainfall as an input. Whilst modification of the DWT parameters may slightly overes-

timate input rainfall, it is not as significant as the consistent underestimation of input rainfall
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by the DCT. The diminishing ability of both the DWT and DCT to match the input rainfall

signal variance indicates that both transforms smooth out input data towards the mean.

This behavior is more significant for the DCT than the DWT. Consequently, when used as

a technique for input data reduction, the DWT will reconstruct temporal variances better

than the DCT. The increased skewness for the reconstructed DWT signals compared to the

observed input signals indicates that there is an increased reconstruction of low-magnitude

rainfall events. On the contrary, the decreased normalized skewness for the reconstructed

DCT signals indicates that a number of the low-magnitude rainfall events are tending to be

reconstructed towards the mean. The kurtosis results shown in Figure 3.6 demonstrate that,

when compared to the observed input signal, events of extreme deviation explain more of

the variance for the reconstructed DWT and less of the variance for the reconstructed DCT.

Consequently, as the nature of the extreme deviations is a critical piece of information, the

use of the DCT for model input data reduction for hydrologic studies that have short time

steps and involving rainfall as an input is not recommended. It is also seen in Figure 3.6 that

the DCT is more likely to miss peak rainfall height information. Consequently, care needs to

be taken when choosing a transform when peak height is critical. Further, the DCT should

not be used for studies involving flood forecasting situations where the accuracy of peak

height is critical.

Whilst it is important that rain gauges measure high-magnitude rainfall events with accu-

racy and precision, it is also important that low-magnitude rainfall events are recorded. Con-

sequently, when evaluating the merits of the DCT and DWT to reconstruct rainfall it would

be prudent to analyze the frequency in which each transform is either unable to reconstruct

a rainfall event or erroneously constructs a rainfall event. Table 3.2 illustrates that, at times,

both transforms will either fail to reconstruct a low-magnitude rainfall event or will erro-

neously construct a rainfall event when there was none observed in the original rainfall time

series.

TABLE 3.2: The mean and standard deviation (SD) for the number of
missed rainfall events for the DWT and DCT using a different number

of parameters.

Number of missed rainfall events
DWT DCT

POP Mean SD Mean SD
40% 239.004 117.317 587.934 155.375
30% 398.005 138.793 645.495 159.378
20% 581.591 145.769 696.288 168.524
10% 852.340 168.590 748.075 184.910
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In general, the DWT outperforms the DCT. The exception to this is at 10 POP. This is a result

of the discrete nature of the DWT analysis function as opposed to the continuous analysis

function used in the DCT. As the POP decreases towards zero both transforms miss more

rainfall events.

Due to rapid increases in rainfall intensity, high-magnitude rainfall events tend to have high-

frequency components. In Fig 3.7 the smoothing of high-frequency, high-magnitude rainfall

events by the DCT is made evident by the lower slope of the linear least squares fit for the

DCT reconstruction of Leaf River observed rainfall data when compared to the DWT. This

FIGURE 3.7: Comparison of the reconstructed DCT and DWT signal
for the Leaf River (Collins) catchment using 20 POP.

shows that the compressed DWT is able to retain more detail for high-magnitude rainfall

events than the DCT. Using 20 POP, 730 DWT parameters are able to reconstruct observed

rainfall with an RSR = 0.315, whereas 730 DCT parameters are able to reconstruct observed

rainfall with an RSR = 0.540. Fig 3.7 and Fig 3.8 shows that the DWT often misses and

sometimes smooths out low-magnitude rainfall events; the DCT however does, reconstruct

inaccurate rainfall at these times. Figure 3.8 also demonstrates, that at lower POPs, the DCT

will smooth out and underestimate high-magnitudes events whilst the DWT will maintain

accuracy and precision.
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FIGURE 3.8: Panel (a) shows a time series comparison of the recon-
structed DCT and DWT signals for the Leaf River (Collins) catchment
using 20 POP for a period of 200 days. Panels (b and(c) are smaller
windows of the same time series during both low- and high-rainfall

periods.

3.8 Conclusions

Succinct descriptions of the DCT and DWT were provided to determine the suitability of

each transform to be used as a tool for hydrologic model input data reduction. Due to their

different construction, each transform provides different possibilities for use in model in-

put data reduction. Since it is infeasible to estimate all transform parameters, the modeller

could choose to estimate high- or low frequency parameters of the DCT. This would result

in minimal control of the temporal component being modified. Due to the multi-level de-

composition of an input signal into high- and low-frequency parameters by the DWT, the

modeller is able to specify the estimation of both time and frequency components. Hence,

portions of the input data record can be targeted for estimation. The use of the DWT as a hy-

drologic model input data reduction technique allows the modeller more flexible options. A

comparison of the DWTs’ and DCTs’ ability to reconstruct MOPEX rainfall data using stan-

dard simulation performance summary metrics, descriptive statistics and peak errors was

then made and it was found that the DWT is most efficient at preserving high-magnitude
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and transient rainfall events. Thus, it is recommended that the DWT be used as a model in-

put data reduction technique for hydrologic studies that have short time steps and involve

rainfall as an input. Considering that the bias for the reconstructed DWT rainfall signal is

consistently lower than that of the reconstructed DCT signal and that the skewness, kurto-

sis and variance are also closest to the input rainfall signal, it is recommended that the DWT

also be used as a model input data reduction technique for hydrologic studies that have long

time steps with rainfall as an input.
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Chapter 4

Estimating rainfall time series and
model parameter distributions
using model data reduction and
inversion techniques

Overview

This chapter builds upon findings from Chapter 3 to answer the second research

question. The DWT is used to reduce rainfall data for the catchment of Warwick.

In conjunction with a likelihood function that considers rainfall and streamflow, the

reduction of rainfall data allows for rainfall time series to be estimated along with

model parameters. The estimated rainfall time series provide an increased under-

standing of hydrologic uncertainty. The findings of this chapter form the founda-

tions for the research presented in subsequent chapters.

This chapter is reproduced from the following article published in Water Resources
Research, American Geophysical Union. Under the Creative Commons Attribution
3.0 License the first author is granted the permissions by the publisher, John Wiley
and Sons to copy, distribute, transmit and adapt the work so long as the original
authors are given credit.

Citation: Wright, A., Walker, J. P., Robertson, D. E., and Pauwels, V. R. N.: A comparison
of the discrete cosine and wavelet transforms for hydrologic model input data reduction,
Hydrol. Earth Syst. Sci., 21, 3827-3838, https://doi.org/10.5194/hess-21-3827-2017, 2017.
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4.1 Abstract

Floods are devastating natural hazards. To provide accurate, precise and timely flood fore-

casts there is a need to understand the uncertainties associated within an entire rainfall time

series, even when rainfall was not observed. The estimation of an entire rainfall time se-

ries, and model parameter distributions from streamflow observations in complex dynamic

catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty

of entire rainfall input time series to be considered when estimating model parameters, and

provides the ability to improve rainfall estimates from poorly gauged catchments. Current

methods to estimate entire rainfall time series from streamflow records are unable to ade-

quately invert complex non-linear hydrologic systems. This study aims to explore the use of

wavelets in the estimation of rainfall time series from streamflow records. Using the Discrete

Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick,

Queensland, Australia, it is shown that model parameter distributions and an entire rainfall

time series can be estimated. Including rainfall in the estimation process improves stream-

flow simulations by a factor of up to 1.78. This is achieved while estimating an entire rainfall

time series, inclusive of days when none was observed. It is shown that the choice of wavelet

can have a considerable impact on the robustness of the inversion. Combining the use of a

likelihood function that considers rainfall and streamflow errors with the use of the DWT as

a model data reduction technique allows the joint inference of hydrologic model parameters

along with rainfall.

4.2 Introduction

Floods can have significant economic, social and environmental impacts (Brouwer and Van Ek,

2004). Cost benefit analyses and environmental and social impact assessments are common

evaluation methods available to water policy decision makers (Hajkowicz and Collins, 2007).

Flood forecast skill greatly influences societal resilience to floods. However, without accu-

rate, precise and timely rainfall information, the value of such analytical tools is rendered

subjective.

Currently, rainfall uncertainty is the biggest obstacle hydrologists face in their pursuit to-

ward obtaining accurate, precise and timely flood forecasts (McMillan et al., 2011). Oper-

ational flood forecasters tend to adhere to familiar flood forecasting procedures, including
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semi-distributed event-based hydrological models (Pagano, 2009). Consequently, it is of-

ten not possible for reliable flood forecasts to be issued until the catchment’s response to

rainfall has been observed (Elliott, 1997). Hydrologists look to overcome this by using con-

tinuous hydrological models, but the lack of reliable rainfall inputs from quantitative pre-

cipitation forecasts (QPFs) impedes the development of robust flood forecasts (Hapuarachchi

et al., 2011). Robertson et al. (2013) and Shrestha et al. (2015) have demonstrated that skill can

be added to raw QPFs by postprocessing the raw QPFs using past observations as input

into a methodology that combines a simplified version of the Bayesian joint probability with

the Schaake shuffle (Clark et al., 2004). The Schaake Shuffle is a methodology to reconstruct

space-time variability in forecasted precipitation and temperature fields. The combination

of the use of model input data reduction techniques with parameter estimation algorithms

allows links to be explored between rainfall input error, QPF postprocessing algorithms and

errors associated with model structure, parameter estimation, and systematic and random

errors associated with observations.

Due to complex interactions between Hortonian overland flow, saturation excess overland

flow, interflow and groundwater flow, discrepancies are quite often noticed between similar

rainfall events and the corresponding runoff, and vice versa. Hence the process of estimat-

ing rainfall from streamflow observations is an ill-posed problem. As a large proportion

of hydrologists favor deterministic models (Pappenberger and Beven, 2006), it is not surpris-

ing that some attempts to estimate rainfall from runoff have taken a deterministic rather

than probabilistic approach (Hino, 1986; Kirchner, 2009). While using analytical inversion

to estimate rainfall from streamflow, Kirchner (2009) draws attention to the fact that, of the

components of the water balance, only streamflow can be considered a catchment-scale ob-

servation. Hence the authors ask, can streamflow and / or soil moisture be used to estimate

catchment scale rainfall time series?

The root zone soil moisture state can have a large impact on a catchment’s rainfall-runoff

characteristics (Grayson et al., 2006). Recent studies e.g. (Crow, 2007; Pellarin et al., 2008; Crow

et al., 2009, 2011; Kucera et al., 2013; Pellarin et al., 2013; Brocca et al., 2014) focus on using

soil moisture to correct and estimate rainfall accumulations. Brocca et al. (2014) coined the

phrase ‘Soil as a Natural Rain Gauge’. In the Soil Moisture to Rain (SM2RAIN) algorithm

(Brocca et al., 2014), rainfall estimates are retrieved from the inversion of the soil water bal-

ance equation, assuming that all rainfall infiltrates. Ciabatta et al. (2015) uses the SM2RAIN

algorithm to nudge satellite precipitation estimates in order to estimate daily rainfall; Abera

et al. (2016) validates this product in a comparative study. If rainfall estimates that are based
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on a satellite soil moisture product are to be used in a flood forecasting situation it is imper-

ative that the rainfall estimate is up to date and that the satellite soil moisture images are

obtained immediately prior to the flood. With the continued improvement of satellite rain-

fall and soil moisture measurement missions, such as the Global Precipitation Measurement

(GPM) mission (Hou et al., 2014) and the Soil Moisture Active Passive (SMAP) (Entekhabi

et al., 2010) mission, it is expected that the methods outlined by Crow et al. (2011); Brocca et al.

(2014) and Ciabatta et al. (2015) will become more valuable for estimating rainfall time series

in the future. Yet there are currently no methods that use both streamflow and soil mois-

ture to estimate rainfall. (Kavetski et al., 2006b,a; Vrugt et al., 2008; Renard et al., 2010, 2011)

Rainfall estimation methods that solely rely on streamflow measurements maintain good

temporal resolution, yet have been subject to poor performance in catchments that have

complex rainfall-runoff characteristics and exhibit highly nonlinear rainfall-runoff behavior.

In an early attempt to estimate rainfall from streamflow, Hino (1986) separated time series

of daily discharge into their respective runoff components using coefficients obtained from

fitting an Auto-Regressive Moving Average (ARMA) model. Using the law of parsimony,

otherwise known as Occam’s razor “Entities should not be multiplied unnecessarily” Kirchner

(2009); Teuling et al. (2010); Adamovic et al. (2015), and Rusjan and Mikos̃ (2015) used first or-

der approximations to analytically invert the water balance equation. These approximations

also assume that all rainfall infiltrates and are not able to estimate rainfall when stream-

flow is generated by other mechanisms. Using the Bayesian Total Error Analysis (BATEA)

framework (Kavetski et al., 2006b), Kavetski et al. (2006a) are able to estimate rainfall time

series by identifying storms within a rainfall time series and estimating a storm multiplier

that acts to modify each of the observations within that storm. Using a Markov Chain Monte

Carlo (MCMC) sampler known as the Differential Evolution Adaptive Metropolis (DREAM)

(Vrugt et al., 2009b), Vrugt et al. (2008) also estimated rainfall time series using storm multi-

pliers. This methodology results in prediction uncertainty bounds for storm events as well

as significantly altering the posterior parameter distributions for the hydrological model

parameters. Work by Renard et al. (2010, 2011) have built on the idea of using storm multi-

pliers by using rainfall multipliers characterized by a hyperdistribution. The importance of

specifying informative prior distributions on rainfall errors was demonstrated. Additionally

conditional simulation was proposed as an effective method to build such priors for daily

rainfall estimation. Using multiplicative error structures for rainfall has shown promise, yet

is unable to ascertain uncertainty when no rainfall is recorded. This is a critical gap that has

not been addressed in literature, particularly for poorly gauged catchments. Depending on
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the location of a rainfall gauge, poorly gauged catchments are particularly prone to over-

estimate, underestimate or completely miss localised rainfall. Thus it is imperative that a

characterization of rainfall error allows for uncertainty that is independent of the observed

rainfall magnitude to be developed. Further, rainfall observations of the same magnitude

may have different uncertainty. The use of transfer functions to reduce input model data

into parameters allows for a window of input data to be adjusted for each parameter. In

contrast to the use of storm multipliers, the use of transfer functions allows for uncertainty

in rainfall events to be accounted for when no rainfall is recorded at the gauge.

This paper explores the use of wavelets to estimate rainfall time series in the context of a

lumped catchment scale rainfall runoff model. To address the need for estimating rainfall

time series, this paper will address (i) the use of the DWT to reduce model input data to

parameters for estimation of input uncertainty, (ii) possible methodologies to estimate input

uncertainty using DWTs and DREAM(ZS) and (iii) estimation of rainfall input series and the

validation of results against rainfall and streamflow observations.

4.3 Hydrologic model description

For this study, the Sacramento Soil Moisture Accounting (SAC-SMA) model was used with a

fixed integration time step of 1 day. This lumped conceptual watershed model is used by the

National Weather Service River Forecast System (NWSRFS) for flood forecasting throughout

the United States. This model has been used as well to model the rainfall-runoff transfor-

mation throughout Australia (Herron et al., 2002) and has shown promising results for soil

moisture data assimilation (Crow and Ryu, 2009).

The SAC-SMA model can be described as a nonlinear regression model, F(·), which simu-

lates a n-record of discharge values, ~Y = {y1, . . . , yn} in mm/d:

~Y = F(θ, x̃0, ~̂E, ~̂R). (4.1)

The model input arguments are the 1×d vector, θwith SAC-SMA parameter values, the 1×m

vector ~̃x0 with values of the initial states (at t = 0) in mm, and 1×n vectors ~̂E = {ê1, . . . , ên}

and ~̂R = {r̂1, . . . , r̂n} that store the observed values of the potential evapotranspiration (PET)

and rainfall in mm/d, respectively. Note, the ̂(hat) symbol is used to denote measured
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quantities, and a ˜(tilde) symbol reflects variables that could, in theory, be observed in the

field but due to their conceptual nature are difficult to determine accurately.

The SAC-SMA model is comprised of three layers: surface, upper and lower soil moisture

layers. A variable impervious area alters the percentage of precipitation that contributes to

direct runoff and infiltration into the upper soil layer. Evapotranspiration is able to occur

from surface water as well as the lower and upper zone tension water stores. The upper soil

layer is comprised of tension and free water. For free water to be able to contribute to the

lower zone via percolation, total channel flow via interflow or surface runoff, the tension

water store must first be full. Losses in tension water through evapotranspiration can be

replenished by free water in both the lower and upper soil layers. The lower soil layer is

comprised of tension water as well as primary and supplementary free water stores. Unlike

the upper layer, the lower layer has a reserve on the percentage of free water that can supple-

ment tension water losses due to evapotranspiration. Both the primary and supplementary

free water stores contribute to a primary and supplementary base flow. A portion of base

flow contributes to the total channel flow, while another portion contributes to subsurface

discharge. For a more detailed description of the SAC-SMA model the reader is referred to

NWSRFS (2002).

Based on the recommendations of Peck (1976), the 16 parameter SAC-SMA model has been

reduced to 13 parameters by fixing SIDE, RIVA and RSERV, the parameters that control the

ratio of deep recharge to channel base flow, Riparian vegetation area and fraction of lower

zone free water not transferable to lower zone tension water, respectively. Consequently the

SAC-SMA model used has 13 parameters and 6 state variables, hence, d = 13 andm = 6. The

parameter distribution for the remaining 13 parameters is obtained using the DREAM(ZS) al-

gorithm (Laloy and Vrugt, 2012; Vrugt, 2016). The initial parameter space was selected based

on recommendations by Boyle et al. (2000). Since the Maximum A Posteriori Probability

(MAP) solution involved a large number of parameters that were hitting their respective

upper or lower bound, adjustments of the parameter space were made based on recommen-

dations of Anderson et al. (2006). Even with these more relaxed ranges, some parameters

continued to find their MAP value at the edge of their respective search domains. For those

parameters, the search ranges were further increased-making sure that values remain phys-

ically plausible. Table 4.1 summarizes the parameters of the SAC-SMA model including

their prior uncertainty ranges. Note, these enlarged ranges of the parameters are justified

given the rather contrasting characteristics of the Warwick catchment as compared to the

watersheds studied by Boyle et al. (2000) and Anderson et al. (2006).
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4.4 Bayesian inference of SAC-SMA model parameters and

rainfall time series

The rainfall-runoff parameter estimation problem has been studied extensively in the lit-

erature. Many different approaches have been developed to find the optimal parameter

estimates. These approaches initially focused on finding only the global optimal values of

the parameters for some given objective function (Duan et al., 1994; Gan and Biftu, 1996; Thyer

et al., 1999). In the past two decades the interest has switched to assessment of parame-

ter and prediction uncertainty. Examples of such methods include Bayesian recursive pa-

rameter estimation (Thiemann et al., 2001), the limits of acceptability approach (Beven, 2006;

Blazkova and Beven, 2009), the Bayesian Total Error Analyis (BATEA) framework (Kavetski

et al., 2006b,a; Kuczera et al., 2006; Thyer et al., 2009; Renard et al., 2011), the Simultaneous Op-

timization and Data Assimilation (SODA) (Vrugt et al., 2005), the DREAM algorithm and its

variations (Vrugt et al., 2005, 2008, 2009a,b; Vrugt and Ter Braak, 2011; Laloy and Vrugt, 2012;

Sadegh and Vrugt, 2014), Bayesian model averaging (Butts et al., 2004; Ajami et al., 2007; Vrugt

and Robinson, 2007), the hypothetico-inductive data based mechanistic modeling framework

of Young (2013) and Bayesian data assimilation (Bulygina and Gupta, 2011). This paper adopts

a Bayesian viewpoint to quantify model parameter and predictive uncertainty. If the SAC-

SMA parameters, initial states, PET and rainfall are considered to be unknown, then their

posterior probability distribution, p(θ, x̃0, ~̃E, ~̃R|~̂Y , ~̂E, ~̂R) can be estimated from the observed

discharge, PET, and rainfall time series using Bayes Law

p(θ, ~̃x0, ~̃E, ~̃R|~̂Y , ~̂E, ~̂R) =
p(θ, x̃0, ~̃E, ~̃R)L(θ, ~̃x0, ~̃E, ~̃R|~̂Y , ~̂E, ~̂R)

p(~̂Y , ~̂E, ~̂R)
, (4.2)

where the p(θ, ~̃x0, ~̃E, ~̃R) signifies the joint prior distribution of the parameters, initial states,

potential evapotranspiration and rainfall, respectively, L(θ, ~̃x0, ~̃E, ~̃R|~̂Y , ~̂E, ~̂R) denotes the

likelihood function, and the denominator p(~̂Y , ~̂E, ~̂R) represents the evidence or the marginal

likelihood. This formulation of Bayes law takes into consideration explicitly the major sources

of uncertainty involved in the modeling of the rainfall-runoff transformation. Indeed, rain-

fall and PET observations are subject to considerable uncertainty, and if their errors are not

properly treated then the SAC-SMA parameters will compensate, in part, for their misspec-

ification.

The prior distribution, p(θ, ~̃x0, ~̃E, ~̃R) summarizes all the information about the SAC-SMA
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parameters, initial states, potential evapotranspiration and rainfall data records and their

multivariate dependencies before the primary data (hydrologic measurements) and/or sec-

ondary data (watershed characteristics) are collected. The likelihood function quantifies in

probabilistic terms the distance between the observed and simulated data. Finally, the ev-

idence, p(~̂Y , ~̂E, ~̂R) normalizes the posterior distribution so that it integrates to unity, and

represents a proper statistical distribution. This constant is independent of the parameter

values; hence, the marginal likelihood can be removed from equation (4.2) and a propor-

tionality sign used instead

p(θ, ~̃x0, ~̃E, ~̃R|~̂Y , ~̂E, ~̂R) ∝ p(θ, ~̃x0, ~̃E, ~̃R)L(θ, ~̃x0, ~̃E, ~̃R|~̂Y , ~̂E, ~̂R) (4.3)

Equation (4.3) considers joint inference of the parameters of the SAC-SMA model, its initial

states, and rainfall and potential evapotranspiration data records. This would involve the

estimation of a very large number of unknowns, and result in issues such as overfitting.

To proceed the following is taken advantage of

1 Watershed-scale hydrologic processes exhibit generative, negative feedbacks that grav-

itate the moisture status to a stable state, also called attractor. Numerical results of

watershed models indeed demonstrate that the effect of the initial states on the model

results rapidly diminishes with increasing “distance" from the start of simulation.

Therefore advantage can be taken of a spin-up period of Q days to remove sensitivity

of the modeling results and error residuals to state value initialization.

2 The inherent low-pass filter properties of watershed models and buffer capacity of soil

moisture stores causes the governing state dynamics and output fluxes to be relatively

insensitive to random and systematic errors in the PET data (Oudin et al., 2006; Samain

and Pauwels, 2013), and it can be conveniently assumed that δt(
˜̃E(t−∆t:t), Ẽ(t−∆t:t)) ≈ 0.

Yet the framework presented herein can be easily extended to explicitly treat errors in

PET observations as well.

If these two assumptions are adopted, then equation (4.3) simplifies to

p(θ, ~̃R|~̂Y , ~̂R) ∝ p(θ, ~̃R)L(θ, ~̃R|~̂Y , ~̂R). (4.4)
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It can further safely be assumed that the prior information of the parameters and rainfall

record are independent. Thus, the multivariate joint prior distribution, p(θ, ~̂R), can be re-

placed with two individual prior distributions for the parameters and the hyetograph. If it

is further assumed that the prior parameter distribution, p(θ) is uniform, flat and non infor-

mative, then this leaves the following definition of the posterior distribution, p(θ, ~̃R|~̂Y , ~̂R), of

the parameters and rainfall record given the observed discharge and rainfall record. Equa-

tion (4.4) can be further simplified by decomposing the likelihood function into two separate

likelihood functions for the discharge data and rainfall record as follows: L(θ, ~̃R|~̂Y , ~̂R) =

L(θ|~̂Y )L(θ| ~̂R). This decomposition is appropriate as it is highly plausible that the rainfall

and discharge measurement data errors are indepedent. Thus, the following equation re-

mains

p(θ, ~̃R|~̂Y , ~̂R) ∝ p( ~̃R)L(θ|~̂Y )L(θ| ~̂R) (4.5)

and requires the user to define the rainfall data prior, p( ~̃R), and the pair of likelihood func-

tions, L(θ|~̂Y ), and L(θ| ~̂R), respectively. Before the mathematical definition of these three

distributions is further discussed, the parameterization of the rainfall record is presented.

This is of crucial importance and prerequisite to the numerical implementation of Equation

(4.5).

4.5 Model input data reduction using the DWT

Wright et al. (2017a) provided a comparison of the discrete wavelet and discrete cosine trans-

forms for hydrologic model input data reduction and recommended that the Discrete Wavelet

Transform be used for hydrologic studies that have both short and long temporal durations

that also involve rainfall as an input. Using the pyramid algorithm developed by Mallat

(1989) along with the Daubechies wavelets (Daubechies, 1990) an input rainfall signal can be

transformed into a set of rainfall parameters. This algorithm can be summarized as follows.

The input rainfall ~̃R is passed through high- and low-pass filters where

~pL
j (i) =


∑L
m=1

~̃R(2i−m− 1)w(m), j = 1∑L
m=1 ~p

L
j−1(2i−m− 1)w(m), j > 1.

(4.6)

is the low-pass and
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~pH
j (i) =


∑L
m=1

~̃R(2i−m− 1)h(m), j = 1∑L
m=1 ~p

L
j−1(2i−m− 1)h(m), j > 1.

(4.7)

is the high-pass, where h(m) and w(m) are the scaling and wavelet functions used in the

high and low-pass filters, respectively. ~pL
j (i) and ~pH

j (i) refer to the low and high-pass param-

eters at the jth level respectively. This process decomposes the original signal into levels of

parameters that preserve resolution in both the temporal and frequency domains. Due to the

length of each resultant parameter series being equivalent to the length of the input series,

every other parameter is removed to avoid redundancy. This process is referred to as down

sampling. At this stage, further decomposition can be achieved by iteratively passing the

low-pass parameters through the filtering equations. At each level the low- and high-pass

parameters can be referred to as approximation or detail parameters. A number of different

combinations of these DWT approximation and detail parameters can be sampled to alter

different components of the rainfall time series. After the parameters are sampled the DWT

decomposition process is reversed by iterating through

~pj−1(i) =

b(L−1+i)/2c∑
m=di/2e

(
~pH
j (i)h(2m− i)

)(
~pL
j (i)w(2m− i)

)
, j > 1, (4.8)

where d.e is the ceiling operator. Finally, the input signal is reconstructed using

~̃R(i) =

b(L−1+i)/2c∑
m=di/2e

(
~pH
j (i)h(2m− i)

)(
~pL
j (i)w(2m− i)

)
, j = 1, (4.9)

before the resulting rainfall time series is able to passed into equation (4.5) for evaluation.

A major advantage of using discrete wavelet decomposition is that the user is able to alter

the number of parameters used to sample the posterior rainfall time series. As more levels

of decomposition are used, a lower number of approximation parameters describe the low-

pass component of the rainfall time series. One drawback of estimating the approximation

parameters with more levels of decomposition is that lower resolution can be achieved. For

a more detailed discussion on the DWT, the reader is referred to Mallat (2009).
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4.6 Formulation of posterior distribution

Now that a sparse parameterization for the rainfall record has been defined, there remains

the definition for the prior distribution, p(R̃) and two likelihood functions, L(θ|~̂Y ) and

L(θ| ~̂R), in equation (4.5), respectively. In this paper the inference results for a formulation

of the posterior distribution of equation (4.5) is presented to evaluate the sensitivity of the

posterior distribution to the underlying assumptions regarding the information content of

the discharge and rainfall data.

The formulation of p(θ, ~̃R|~̂Y , ~̂R) in equation ((4.5) is derived from Kavetski et al. (2006b) and

assumes a Gaussian likelihood for L(θ|~̂Y ) and L(θ| ~̂R), respectively,

L(a|b) = −1

2
nlog

(
n∑
t=1

(at − bt)2
)

(4.10)

with n-input vectors, a and b. Using β to describe the ratio of the n rainfall depths (in mm/d)

predicted by the k wavelet parameters and their corresponding measured values where,

β =

{
r̃1

r̂1
, . . . ,

r̃n
r̂n

}
, (4.11)

a vague inverse gamma prior for p(R̃) is used

p(σ2
β |ν0, s0) ∝

1

σν0+1
β

exp

(
−ν0s

2
0

2σ2
β

)
, (4.12)

where σβ (mm/d) signifies the rainfall measurement data error, and ν0 > 0 (-) and s0 > 0

(mm/d) are the scale and shape parameter of the inverse gamma prior, respectively.

If the prior of equation (4.12) is combined with the Gaussian likelihoods of the rainfall and

discharge data record then the following formulation of the posterior distribution in equa-

tion (4.5) is derived:

p(θ, ~̃R|~̂Y , ~̂R) ∝
[
SSE(β, 1) + ν0s

2
0

]− k+ν0−1
2 SSE(~Y (θ), ~̂Y )−

n
2 (4.13)

where SSE(a, b) =
n∑
t=1

(a− b)2 and ~Y (θ) = F(θ, ~̃x0, ~̃E, ~̃R).
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If any of the n rainfall multipliers deviate from unity then the first term on the right hand-

side (likelihood of rainfall data) decreases. This is only acceptable if the value of the dis-

charge likelihood (second term, right-hand-side) increases sufficiently such that posterior

density increases as a whole. Thus, the formulation of equation (4.13) constrains the rainfall

adjustments as large changes to the measured rainfall record are discouraged, unless the fit

to the discharge data increases so much so that the product of the two likelihoods increases.

In practice, it is much more convenient to work with the log-formulation of equation (4.13) as

this avoids numerical problems with a zero density if n becomes large. Kavetski et al. (2006a)

is followed and it is assumed that ν0 = 5 and that the value of s0 is estimated along with the

d model parameters and k wavelet parameters. This thus involves the inference of k + d+ 1

unknowns.

4.7 Posterior sampling

A key task in Bayesian inference is now to summarize the posterior distribution of the indi-

vidual SAC-SMA parameters, and rainfall estimates at times t = {1, . . . , n}. Unfortunately,

for equation (4.13) this task cannot be carried out analytically, and thus Markov chain Monte

Carlo (MCMC) simulation with the DREAM(ZS) algorithm to generate samples of the pos-

terior distribution (Vrugt et al., 2008, 2009b; Vrugt, 2016) is used. This method runs N ≥ 3

different Markov chains in parallel and proposals in each chain are created using parallel

direction and snooker updates from an archive of past states of the chains. Snooker updates

involve sampling along an axis that is developed from past states in preference to sampling

along the coordinate axis. This approach solves a practical problem in Monte Carlo Markov

chain (MCMC) simulation, that is choosing a correct orientation and scale of the proposal

distribution. To maximize speed up convergence to the target distribution, the DREAM(ZS)

algorithm uses adaptive randomized subspace sampling to only update a random selection

of parameters. A detailed description of the DREAM(ZS) algorithm appears in Laloy and Vrugt

(2012) Vrugt (2016) and related cited publications.

For all numerical studies presented herein default values for the algorithmic parameters

(Vrugt, 2016) and N = 3 Markov chains are used. Convergence of the sampled chain tra-

jectories using the R̂ convergence diagnostic (Gelman and Rubin, 1992) is used. This statis-

tic compares, for each dimension of the target distribution, the variance of each parameter

within each chain to the variance of that same parameter between the N different chains.
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All trials were executed until the R̂-diagnostic convergence criterion was smaller than the

stipulated threshold of 1.2, R̂j ≤ 1.2 ∀ j = {1, . . . , k + d+ 1}.

4.8 Site and data description

The data set used for the experiment comprises daily rainfall from 14 operational real time

rain gauges, Potential Evapotranspiration (PET) and observed streamflow data for the War-

wick catchment. Warwick is a small sub-catchment of the Condamine-Culgoa catchment,

Figure 4.1. Located in South-East Queensland, Australia, the total drainage area for the War-

wick catchment is 1360 km2. The Warwick basin has been subjected to multiple flood events

of significant magnitude in the past decade. The total length of the perennial channels is 78

km. Cease to flow conditions have been observed during times of extended drought. The

maximum elevation difference along the channel is 308 m. The highest, lowest and mean

elevations in the catchment are 1361, 446 and 650 m Above Mean Sea Level (AMSL), respec-

tively. In the period beginning at the start of November 2000 and finishing at the end of June

2015, the mean, median, 10th percentile and 90th percentile annual rainfall amounts for the

Warwick Alert rainfall gauge are 564, 513, 408 and 748 mm/y, respectively. Due to the severe

droughts that affected Australia for most of the first decade of the millennium, it is likely that

these rainfall statistics are negatively biased and that, over a longer time period the average

rainfall at these gauges would be larger than those observed. The analysis period used the

data with highest quality and begins 1st of January 2007 and ends 31st of March 2013. Areal

rainfall is constructed using the Inverse Distance Weighting (IDW) method, which is current

operational practice at the Australian Bureau of Meteorology (BoM). Distance is calculated

from the catchment centroid to the rain gauge. Monthly PET data from the Australian Water

Availability Project (AWAP) were used. A crump weir was used to record continuous height

measurements. These height measurements have been converted to streamflow using peri-

odically updated rating curves.
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FIGURE 4.1: The location of the Condamine-Culgoa basin in Australia
and digital elevation map of the Warwick subcatchment within this
region. The notation "m AMSL" in the legend denotes "meters above

mean sea level"

4.9 Synthetic case study

4.9.1 Aims

The synthetic case study was designed as a preliminary study to explore some of the differ-

ent model input data reduction techniques that wavelets make available. A major aim of the

synthetic case study was to assess the suitability of the db1 and db2 wavelets to account for

a known random multiplicative heteroscedastic Gaussian error. Another aim was to assess

the value of rainfall, model parameter and streamflow estimates using a model parameter
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estimation approach, a segmented rainfall and model parameter estimation approach and

via the simultaneous estimation of rainfall and model parameters.

4.9.2 Description of experiments

As there is no definite true rainfall time series and model parameter set for the Warwick

catchment, a synthetic case study was conducted. The DWT was used to reduce model in-

put data, to estimate rainfall time series that are representative of the ‘synthetic true’ rainfall

from an imperfect rainfall product. Synthetic streamflow data and model parameters were

created by estimating the SAC-SMA model parameters using areal rainfall and observed

streamflow. The simulated streamflow, estimated parameters and areal rainfall are consid-

ered to be the synthetic truth. A random multiplicative heteroscedastic Gaussian error with

standard deviation equivalent to 10% of the observation was added to the synthetic rainfall

truth in order to simulate the errors that can be expected in an areal rainfall product. Evalu-

ating different assumptions of error types and distributions is outside the scope of this study

and is a possible direction for future studies. The choice of error does not detract from the

ability of the synthetic case study to demonstrate that the DWT is a powerful transform that

can be used to estimate rainfall time series. Throughout the synthetic case study, the per-

turbed rainfall and PET are used as the a-priori input data, the synthetic streamflow truth

and perturbed rainfall truth are used as the evidence for the posterior estimation of model

parameters, rainfall and streamflow.

Throughout the synthetic case study rainfall time series were estimated by inverting the es-

timated level 4 wavelet approximation parameters. The selection of the parameter level to

be estimated and analysis wavelet to be used, determines the number of rainfall observa-

tions that each parameter will impact. The level 4 approximation parameters were chosen

to maximize the trade-off between the benefit gained by representing the rainfall data set

using DWT parameters and creating a highly dimensionalized problem that cannot feasi-

bly be solved. The DWT transform is used with the Daubechies db1 and db2 wavelets. It

is necessary to test different wavelets to assess the impact they have on the assumed error

structure. The model was allowed a spin up period of 100 days, 5 years of data were used in

the calibration period and 357 days of data was used for the validation period. DWT param-

eters are only estimated in the calibration period, consequently rainfall is only estimated in

the calibration period.
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The synthetic case study was comprised of four tests and a benchmark. The benchmark

synthetic test E simulated streamflow using the perturbed rainfall input and the synthetic

truth parameters. Synth 1 used the synthetic true model parameters and the DWT parame-

ters were then constructed and estimated based on the perturbed input rainfall. The second

test, Synth 2, estimated only the SAC-SMA parameters using the perturbed rainfall data.

The third and last tests, Synth 3 and Synth 4, simultaneously estimated both the SAC-SMA

parameters and the DWT parameters for the perturbed input rainfall using the db1 and db2

wavelets, respectively. During the synthetic case study only the level 4 approximation pa-

rameters were modified. Of which there were 115 and 116 for the db1 and db2 wavelets

respectively.

4.9.3 Results and discussion

The performance of each synthetic test in the calibration and validation period as well as

the rainfall and streamflow volume for the calibration and validation periods are shown in

Table 4.2. All synthetic experiments apart from Synth 3 were able to simulate streamflow at

least as well as the benchmark synthetic test E.

The implications of this result will be elaborated on. As there is no observation error in the

synthetic truth streamflow and the synthetic true model parameters are known in Synth 1,

Synth 1 therefore tests the ability of the proposed methodology to deal with a random het-

eroscedastic multiplicative Gaussian error in isolation. If subsequent tests are not susceptible

to over fitting then, for the given DWT setup, Synth 1 should place a lower bound on the

streamflow RMSE able to be achieved in the calibration period. However, as the calculated

RMSE in the calibration period for Synth 2 is much lower than the calculated RMSE for Synth

1 and the benchmark test E, it is clear that the model parameters are being modified in order

to satisfy the likelihood function.

Surprisingly Synth 3 both simulates streamflow and estimates rainfall the poorest. As the

RMSE of streamflow in the calibration period is closely related to the second term of equa-

tion (4.13), the only way that this solution can be returned as the MAP solution is that the

first term of equation (4.13) was increased sufficiently so that the resulting posterior density

increased. The reason for this is the inability of the db1 wavelet to account for random mul-

tiplicative heteroscedastic Gaussian errors. Modification of the DWT level 4 approximation

parameters in Synth 3 results in a homogeneous adjustment in rainfall for the window in

which the DWT parameter adjusts. Consequently, it is postulated that the db1 wavelet is
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more suited to correct homoscedastic errors. The validity of this postulation may vary with

model structure and distribution of parameters. The good simulation of streamflow and es-

timation of a realistic rainfall time series in Synth 4, in which the level 4 wavelet parameters

for the db2 wavelet are estimated, further validates this observation. The non-linear na-

ture of the db2 wavelet allows the estimation of wavelet parameters to account for random

multiplicative heteroscedastic Gaussian errors.

The 13 SAC-SMA synthetic truth model parameters are compared to the MAP solutions

obtained using the perturbed rainfall product and the simultaneous estimation of model

parameters as well as rainfall in Table 4.3. The parameter distributions obtained in Synth 2

and Synth 4 are rarely able to estimate parameter distributions that describe the synthetic

truth model parameters. Given the prevalent nature of equifinality in hydrological systems,

this result is not all together unexpected. The only difference between the generation of

the synthetic truth model parameters and the estimation of model parameters in Synth 2 is

that the input rainfall is perturbed with a random heteroscedastic multiplicative Gaussian

error. Since the synthetic truth parameters are not able to be estimated, it is expected that

the model parameters were erroneously modified in order to account for input error and

consequently produce superior streamflow. Consequently, unless either the input error is

removed before simulation or additional constraints, such as using informative priors in a

similar fashion to Renard et al. (2010), are placed on the system, it is likely that estimations

of both rainfall and model parameters will include some erroneous modifications in order

to satisfy the likelihood function. It is also seen in Synth 4 that even small modifications to

input rainfall are able to vastly change the model parameters estimated. This result does not

mean that realistic rainfall time series cannot be estimated, but rather that the rainfall time

series estimated may include some errors.

Comparisons of the perturbed rainfall, the MAP rainfall estimations using the synthetic true

model parameters and the simultaneous estimation of DWT rainfall parameters and model

parameters using the db1 and db2 analysis wavelets are made against the synthetic true rain-

fall in Figure 4.2. While the perturbed rainfall was best able to represent the synthetic true

rainfall, the rainfall estimations from Synth 1, Synth 3 and Synth 4 were still quite reason-

able. Due to the slope of the estimations made by the db2 wavelet being closer to unity than

those obtained using the db1 wavelet, the larger coefficient of determination and the lower

RMSE, it is evident that the db2 wavelet is more suited to representing the random multi-

plicative heteroscedastic Gaussian errors than the db1 wavelet. Neither Synth 3 or Synth

4 are able to represent rainfall as well as Synth 1 in which the true model parameters are
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FIGURE 4.2: Comparison of the (top left) perturbed synthetic truth
rainfall, and (top right) synthetic and estimated rainfall using infer-
ence of only the wavelet parameters (top right plot), joint inference
of the SAC-SMA model parameters and wavelet parameters using
(bottom left) the db1 wavelet and (bottom right) db2 wavelet. The
linear least squares fit and corresponding quality of fit metrics are

separately indicated in each plot.

assumed known. This is further proof that the rainfall and model parameter estimations can

be erroneously modified in order to produce superior streamflow.

Figure 4.3 supports the hypothesis that rainfall time series can be estimated through the

simultaneous modification of DWT rainfall parameters and model parameters. Figure 4.3

(top) shows the total volume of rainfall estimations over the calibration period for the syn-

thetic experiments 2 and 4 next to benchmark test E. Also shown are the maximum (3945

mm) and minimum (2660 mm) rainfall volumes observed throughout the catchment. Us-

ing the true synthetic parameters, S2 is able to estimate a rainfall time series that simulates



4.9. Synthetic case study 75

FIGURE 4.3: The estimated rainfall volume for the calibration period
plotted against the RMSE of the estimated rainfall’s streamflow sim-
ulation when compared to observed streamflow. The color bar in-
dicates the correlation coefficient between the estimated rainfall and
observed rainfall and the dotted lines in both plots show the maxi-
mum and minimum rainfall volumes observed at the gauges within
the catchment. (top) The estimated rainfall time series after the con-
vergence criteria has been met for Synth 2 and Synth 4. “E” represents
the streamflow simulation in which the perturbed rainfall is used as
input to the hydrological model with the synthetic truth parameters.
(bottom) The same as the top panel but for experiments 2 and 3. Ex-
periment 1 results are shown to demonstrate the results of a tradi-

tional calibration approach.
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streamflow better than the benchmark simulation and is in partial agreement with the vol-

umes obsserved at the rainfall gauges. The rainfall time series estimated in S4 is able to

estimate rainfall that has a total volumetric range that is generally in agreement with obser-

vations while simulating streamflow with a lower RMSE than the perturbed input product.

The synthetic case study has shown that the db1 wavelet does not adequately account for

random multiplicative heteroscedastic Gaussian errors for the described model data reduc-

tion and model inversion methodology to estimate rainfall time series. The db2 is a more

suitable wavelet choice. A model parameter distribution that describes the synthetic true

model parameters could not be retrieved. However, this was not entirely unexpected. A

rainfall time series that is generally in agreement with observations could be estimated via

the simultaneous estimation of rainfall and model parameters. All rainfall time series esti-

mated using the db2 wavelet led to better simulations than the benchmark test experiment,

a traditional calibration approach in which only model parameters are estimated, and the

estimation of rainfall time series using the synthetic truth model parameters.

Since the synthetic experiments were applied at a relatively coarse temporal resolution, it is

expected that using a finer resolution would enable rainfall estimations to meet or exceed the

ability of the perturbed rainfall input to model the synthetic true rainfall. Even if the rainfall

estimations are not able to reproduce the synthetic true rainfall, the methodology still has a

few advantages in that rainfall time series that are similar, yet in this instance have a drier

tendency, to those observed at the gauges are produced. These series are able to simulate

streamflow which is closer to the synthetic streamflow than that produced by the synthetic

rainfall. Thus, it is likely that streamflow forecasts would benefit from rainfall forecasts that

are conditioned on rainfall time series that are known to give good results.
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4.10 Observation case study

4.10.1 Aims

The observation case study was designed to further explore some of the different model in-

put data reduction techniques that wavelets make available. A major aim of the study was

to assess the suitability of the db1 and db2 wavelets to account for unknown errors in in-

put data. Other aims were to determine the impacts of estimating approximation and detail

parameters at different levels as well as assessing the value of rainfall and streamflow esti-

mates using a traditional calibration approach, a segmented rainfall and model parameter

estimation approach and via the simultaneous estimation of rainfall and model parameters.

This study does not aim to nor is able to improve streamflow simulations in the validation

period but rather aims to gain understanding of realistic representations of rainfall that can

lead to superior streamflow simulations.

4.10.2 Description of experiments

The observation case study begins by estimating an initial parameter distribution set for the

13 SAC-SMA parameters in experiment 1. Experiment 2 then used the estimated MAP pa-

rameter set to estimate a rainfall time series. The main difference between experiments for

experiment 2 to 8 is that the DWT is either constructed differently or different parameters

of the DWT are being estimated. In experiment 3 simultaneous estimation of model pa-

rameter distributions and rainfall time series was then performed by estimating the wavelet

approximation parameters, experiments 4 and 5 involved estimating the detail parameters

of different levels. To this point the level of decomposition was held constant throughout.

Next in experiments 6 and 7, the simultaneous estimation of model parameter distributions

and rainfall time series was performed by estimating the wavelet approximation parameters

under different levels of wavelet decomposition. The number of DWT parameters estimated

for each experiment are given in Table 4.4. After this the simultaneous estimation of model

parameter distributions and rainfall time series was conducted in experiment 8 using the

“db2” wavelet. This was done to assess the ability of the db1 and db2 wavelet to model the

errors for the experiments.

Similar to the synthetic case study the model was allowed a spin up period of 100 days,

5 years of data was used in the calibration period and 357 days of data was used for the

validation period. Throughout the observation case study observed rainfall and PET are
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used as the a-priori input data, the observed streamflow and rainfall are used as the evidence

for the posterior estimation of model parameters, rainfall and streamflow.

4.10.3 Results and discussion

The performance of the inference approaches in the observation case study for the calibra-

tion and validation period (where applicable) as well as the rainfall and streamflow volume

for the calibration and validation periods are shown in Table 4.4. All of the experiments

were able to estimate model parameter and temporal rainfall distributions or combinations

thereof that yield superior streamflow simulations in the calibration period. As expected

there was no discernible difference in the validation period. This is because rainfall was not

able to be modified in this period.

While the streamflow simulations are consistently improved, the resulting estimated model

parameter distributions and rainfall time series or combinations thereof are not all desir-

able. In experiment 2 a rainfall time series was estimated using the MAP model parameter

set found in experiment 1. Thus a set of rainfall time series that agrees with the observed

gauged rainfall was estimated. In contrast to the synthetic case study (Synth 3 and Synth 2)

the simultaneous estimation of both rainfall time series and model parameter distributions

in experiment 3 is able to both simulate streamflow better than experiment 2 and produce

rainfall time series that are closer to the rainfall observations at the gauges. While the esti-

mated rainfall series from experiments 4, 5 and 6 are able to simulate superior streamflow,

the resultant estimated rainfall time series appears to be unrealistic when compared to the

volumes at the rainfall gauges.

In general, the results from experiments 3-6 suggest that the use of the wavelet approxima-

tion parameters yield superior results when compared to use of the wavelet detail parame-

ters. When compared to solely estimating model parameters, the streamflow simulated in

experiments 3 and 7 showed that RMSE improved by a factor of 1.67 and 1.78, respectively.

As expected, using a higher level of decomposition and consequently less parameters in the

rainfall reduction in experiment 3 did not produce superior streamflow simulations, or rain-

fall time series when compared to the use of a lower level of decomposition and estimation

of more wavelet parameters in experiment 7. The use of the “db2” wavelet in experiment 8

produced similar streamflow simulations and rainfall time series as was found in experiment

3. This finding suggests that, unlike the introduced error in the synthetic case study, errors
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in rainfall observations may not be of a random heteroscedastic multiplicative Gaussian na-

ture. Studies conducted by Renard et al. (2010) and McMillan et al. (2011) have attempted to

evaluate multiplicative error models and account for input and structural errors in hydro-

logical modeling, respectively. Their findings indicate that rainfall errors, especially in larger

storms, appear to be heteroscedastic. A shortcoming of the studies was that errors in rain-

fall when no rainfall was observed were not taken into account. Consequently more work

is required to determine error models that account for errors when no rainfall is observed.

The results of this study indicate that the DWT transform is a tool that can be utilized to

further understand rainfall errors. Further work would look at identifying a superior anal-

ysis wavelet for the categorization of rainfall errors and rainfall reduction. The unrealistic

estimation of rainfall time series in experiments 4-6 further suggests that using informative

priors for rainfall measurement error (Renard et al., 2010) may produce fruitful results.

A depiction of the estimated rainfall for a 120 day duration is provided in Figure 4.4 for

comparison to other rainfall estimation methods. Unlike the methodology proposed by Hino

FIGURE 4.4: Rainfall estimates for experiment 3 over a 120 day pe-
riod. The blue crosses and red line represent the observed rainfall
and mean rainfall estimates, respectively. The dashed red line is the
MAP rainfall estimate while the grey shading indicates the 5th and

95th percentile rainfall estimates.

(1986), this method does not attempt to separate streamflow into respective runoff compo-

nents. Further, as was the case in work conducted by Kirchner (2009); Teuling et al. (2010);

Adamovic et al. (2015) and Rusjan and Mikos̃ (2015), no first-order approximations, to ensure

the water balance can be analytically inverted, are made. Figure 4.4 shows that this method-

ology allows for uncertainty in rainfall to be estimated when no rainfall was observed at
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the gauges. This is a shortcoming of studies that use the rainfall multiplier method (Kavet-

ski et al., 2006b,a; Vrugt et al., 2008; Renard et al., 2010, 2011). By using the DWT to describe

rainfall, this study attempts to move away from the rainfall multiplier methods. The effec-

tiveness of the study is somewhat limited by the use of multipliers in formulation of the

likelihood function. Developing a new likelihood function was outside the scope of the pa-

per. Doing so in future studies could enhance the value of the techniques described within

this study. Since the resultant streamflow from experiment 3 is superior to that obtained

from a traditional calibration approach, the median, MAP 5th and 95th percent rainfall es-

timates indicate times when streamflow is improved by providing increased or decreased

estimates of rainfall as well as the degree of uncertainty associated with the rainfall esti-

mates. It is observed that both the median and MAP rainfall estimates are close to zero

when rainfall was observed at the gauge for the time period spanning the 820th to the 830

days. Conversely, rainfall estimates are higher than that observed at the gauge for the time

period spanning the 875th to the 885th day. Further, during the time period spanning the

855th to the 865th day, the rainfall estimates completely agree with the observations of zero

rainfall. This finding indicates that the rainfall estimation methodology, when applied to

the SAC-SMA model, is able to account for rainfall events that are accurately observed as

well as under and over observed. For all but a very few time steps the uncertainty bounds

estimated by this methodology cover the observed rainfall volumes. Considering that all of

these rainfall estimates simulate streamflow that is closer to the observed streamflow, this

result is quite significant. This indicates that a significant improvement in streamflow sim-

ulation can be made with an improved understanding of rainfall uncertainty. A limitation

of this methodology is made evident by examining the constant uncertainty bounds for con-

secutive days. This is an artefact generated by estimating DWT parameters that apply to a

number of consecutive days. The impact on the results can be minimized by increasing the

number of estimated parameters or by choosing a more suitable analysis wavelet. The study

of this issue is outside the scope of this work.

Figure 4.3 (bottom) shows the converged rainfall volumes for experiments 2 and 3 and the

results of a traditional calibration approach in experiment 1. When compared to the syn-

thetic case study in Figure 4.3 (top), the observation case study in the bottom panel of Figure

4.3 (bottom) shows that both the independent estimation of rainfall time series and model

parameters (experiment 2) and the simultaneous estimation of rainfall time series and model

parameter distributions are able to yield rainfall time series that are generally in agreement
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with the gauges and consistently produce superior streamflow estimates than their respec-

tive benchmarks. Further, as seen in Figure 4.3, the total volumes of the rainfall time series

that are estimated in experiments 2 and 3 cover a broad volumetric range. This range is

much closer to the range observed at the gauges than their synthetic case study equivalents.

The results of experiment 3 indicate that the proposed likelihood function is able to both

realistically constrain rainfall estimations and simulate streamflow with RMSE 1.67 times

lower than that obtained from only estimating model parameters. Thus, the use of the pro-

posed likelihood function is advantageous when compared to likelihood functions that do

not consider input uncertainty.

The observation case study further explored some of the different model input data reduc-

tion techniques that wavelets make available. In contrast to the synthetic case study, nei-

ther the db1 nor db2 wavelets were able to better account for errors in the input data. The

formulation of a complete description of rainfall errors was outside the scope of this study.

However, this result suggests that the input error in the observation case study contains both

homoscedastic and heteroscedastic errors and that further exploration is warranted. It was

found that estimating the approximation parameters of lower level DWT decompositions

were able to provide the most realistic rainfall time series with streamflow simulations that

are superior to the traditional calibration approach. Both a segmented rainfall and model

parameter estimation approach and the simultaneous estimation of rainfall and model pa-

rameters were able to estimate realistic rainfall time series that simulated streamflow better

than the benchmark. The findings detailed in this discussion indicate that using the pro-

posed likelihood function, realistic rainfall time series and streamflow simulations can be

obtained.
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4.11 Conclusions

The DWT was used to reduce model input data for the estimation of input uncertainty.

Along with DREAM(ZS), different aspects and configurations of the DWT were explored

to outline possible methodologies that may be used to estimate input uncertainty. In this

study the methodologies are applied to a gauge-based rainfall estimate yet the methodolo-

gies are not limited to gauge-based rainfall estimates. These methodologies could be applied

to hydrologic input data such as high-resolution remote sensing of rainfall or even evapo-

transpiration. It was found that in conjunction with the estimation of DWT rainfall parame-

ters the use of a likelihood function that considers both input rainfall and streamflow error

is able to estimate model parameter distributions and entire rainfall time series. The joint

estimation of model and wavelet approximation parameters yielded estimates of the most

realistic rainfall time series. At the same time streamflow simulations were shown to have

improved RMSE by a factor of up to 1.78 when being compared to benchmark simulations

in which only model parameters were estimated. The choice of analysis wavelet used for

estimation purposes can have a considerable impact on the errors that are corrected for. In

most cases, but not all, the proposed likelihood function was able to effectively constrain

rainfall estimations while simultaneously producing streamflow simulations that were su-

perior to a traditional calibration approach. Finally, a methodology to create a set of realistic

rainfall time series was presented. This methodology will be used in a future study to com-

pare rainfall time series and their respective model parameters with their ability to simulate

streamflow and soil moisture observations.
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Chapter 5

A multi model hydrological

analysis of rainfall estimates using

ensemble Kalman filter

innovations

Overview

This chapter addresses the third research question by constraining rainfall estimates

with remotely sense soil moisture observations. Model input data reduction and in-

version techniques developed in chapters 3 and 4 are used to estimate rainfall time

series in the catchment of Warwick for 3 rainfall-runoff models. Using the estimated

rainfall time series RS SM observations are assimilated into 3 hydrological models.

Analysis of the innovations demonstrate that the choice of model and RS SM prod-

uct can have a significant impact on the quality of rainfall estimates. This chapter

presents a methodology to estimate and evaluate rainfall estimates. The resulting

rainfall estimates can be used in future research to condition rainfall forecasts and

improve flood forecast skill.

This chapter is reproduced from an article submitted to the Journal of Hydrometeo-
rology, American Meteorological Society.
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5.1 Abstract

An increased understanding of the uncertainties present in rainfall time series can

lead to improved confidence in both short- and long-term streamflow forecasts.

This study presents an analysis that considers errors arising from model input data,

model structure, model parameters and model states. Areal rainfall time series were

estimated for the study catchment of Warwick, Australia using multiple rainfall-

runoff models that take advantage of model input data reduction and model inver-

sion techniques. Remotely sensed soil moisture observations from the Soil Mois-

ture Ocean Salinity (SMOS) and Advanced Microwave Scanning Radiometer-Earth

observing system (AMSR-E) satellites were assimilated into three different rainfall-

runoff models using an ensemble Kalman filter (EnKF). Innovations resulting from

the observed and predicted soil moisture were analyzed for Gaussianity. The find-

ings demonstrate that the combination of remotely sensed soil moisture product and

rainfall-runoff model chosen have a significant impact on the quality of rainfall es-

timates. All models simulated superior streamflow and estimated rainfall to be less

than the observed rainfall. Rainfall estimates obtained using the Sacramento Soil

Moisture Accounting (SAC-SMA) model were the most realistic. Further, the SAC-

SMA model was best able to simulate streamflow. Superior EnKF innovations were

obtained when SMOS remotely sensed soil moisture observations were assimilated

into the SAC-SMA model and its rainfall estimates.

5.2 Introduction

The analysis and understanding of the uncertainty associated with streamflow ob-

servations and simulations can aid in the reduction of socioeconomic and environ-

mental costs of floods and promote robust decision making in water management

applications (McMillan et al., 2017). An improved understanding of the uncertainty

in streamflow simulations will allow water authorities to make informed and re-

liable decisions that affect drought management, water allocations, flood resilience

and agricultural demand. The major sources of uncertainty in streamflow simulation

and forecasting were errors in model input data, model structure, model parameters
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and model states (Vrugt, 2016). A knowledge gap currently exists in the combined

analysis of errors arising from these sources.

In rainfall-runoff models, soil moisture governs the proportion of rainfall that con-

tributes to surface and subsurface flows (Tebbs et al., 2016). Consequently, recent

studies have focused on skillfully updating rainfall observations using remotely

sensed (RS) soil moisture (SM) observations (Brocca et al., 2015; Ciabatta et al., 2015).

As such it is expected that rainfall estimates obtained via inverting streamflow ob-

servations will benefit from the intermediate soil moisture states being constrained

by RS SM observations.

Two dominant techniques to estimate rainfall from soil moisture have emerged.

First, RS SM observations have been used to update an Antecedent Precipitation

Index (API) forced by satellite rainfall (Crow et al., 2009), with the API innovations

assumed to be correlated with the errors between the satellite rainfall and actual

rainfall. This assumption implies that the observed soil moisture is influenced by

past rainfall, and that losses due to percolation and Potential Evapotranspiration

(PET) were negligible. It is therefore expected to work best in catchments and for

events in which minimal surface runoff occurs.

Second, is the direct estimate rainfall from the knowledge of relative soil moisture.

Kirchner (2009) used first order approximations to the water balance equation to de-

scribe catchments as simple dynamical systems, thus enabling rainfall to be esti-

mated from streamflow or soil moisture observations. Brocca et al. (2013, 2014) made

simplifications to the soil water balance equation to enable the direct estimation of

rainfall from the knowledge of relative soil moisture. These simplifications assume

that all rainfall infiltrates and that PET is zero when rainfall occurs. The technique

has successfully been applied at several sites throughout Europe (Brocca et al., 2015;

Ciabatta et al., 2015), and has also been demonstrated to improve flood modeling

(Massari et al., 2014). Whilst these techniques have shown encouraging results, re-

stricting the analysis to events and catchments in which all rainfall infiltrates places

a limitation on the applicability of the techniques. A knowledge gap therefore ex-

ists in the utilization of soil moisture observations to estimate or correct rainfall for

complex catchments or events that exhibit both surface and subsurface flows.
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To effectively utilize soil moisture observations to estimate or correct rainfall for

complex catchments or events that exhibit both surface and subsurface flows, it is

imperative that the main sources of error, and the methods to account for them,

be considered. Errors in rainfall-runoff modeling can arise from model input data,

model structure, model parameters and model states (Vrugt, 2016). The objective

of data assimilation is to incorporate observations of the system to minimize errors.

Prior to data assimilation techniques being used to estimate or correct input data,

the hydrologic community largely considered the three main types of data assimila-

tion to be; system identification, parameter estimation and state estimation (Liu and

Gupta, 2007).

System identification suggests that, in addition to the concept of equifinality in which

multiple parameter sets tend to arrive at equally acceptable solutions, there were a

range of models that have multiple parameter sets that can adequately describe a

hydrologic system. Model averaging schemes attempt to extract useful information

from each model by assigning a weight to each (Duan et al., 2007). The aim is to take

advantage of the fact that some models will outperform other models in different

flow scenarios. This suggests that different models will be more or less suitable for

different catchments and/or flow events. Renard et al. (2010) identified that a short-

coming of model averaging techniques is the lack of distinction between input errors

and model structure (Vrugt and Robinson, 2007).

The focus of parameter estimation has shifted from deterministic parameter estima-

tion towards stochastic parameter estimation (Vrugt, 2016). This shift is largely due

to the advancement of computational power and acceptance of equifinality within

the modeling community. Deterministic parameter estimation techniques were fo-

cused on finding a unique parameter set that best describes a hydrologic system via

the minimization of an objective function. However, the choosing of an objective

function is subjective (Vrugt, 2016) and often leads to finding a parameter set that is

able to only partially describe the hydrologic system. Consequently, each objective

function may perform well in some catchments or flow situations and poorly in oth-

ers. Thus, deterministic parameter estimation often leads to unreliable simulation of

streamflow in forecasting situations. The aim of stochastic parameter estimation is to
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select all parameter sets that were able to adequately describe the hydrologic system.

Sampled parameter sets were ranked based on an objective function, the effective-

ness of which is dependent on assumptions made about model and measurement

error (Vrugt, 2016). Few studies have focused on elucidating the link between pa-

rameter estimation and input error (Vrugt et al., 2008; Kavetski et al., 2006b; Renard

et al., 2011). However, it is likely that when combined with efforts to constrain state

estimates these techniques will become more valuable.

Pauwels (2008) describes an alternative to traditional calibration schemes in which

Monte Carlo simulations, in conjunction with the EKF were used to estimate model

parameters instead of the traditional model states. Moradkhani et al. (2005) have

demonstrated that the EnKF and particle filter can be used to simultaneously esti-

mate model parameters and states. Vrugt et al. (2005) demonstrated that data assimi-

lation via the EnKF can be used in conjunction with the Shuffled Complex Evolution

Metropolis - Univeristy of Arizona (SCEM-UA) Algorithm (Vrugt et al., 2003). These

studies provide techniques that were able to explore links between parameter esti-

mation and the simulation of observed states. The authors expect that combining the

strengths of these studies with studies that include the analysis of model structure

and input uncertainty will be a step towards further unraveling the links between

errors from input data, model structure, model parameters and model states.

This paper is the first to simultaneously explore the links between model estimated

rainfall time series, model structure, model parameter estimates and modeled states.

Rainfall time series and model parameters were estimated from multiple models

by taking advantage of model input data reduction techniques, an objective func-

tion that balances rainfall and streamflow estimates and the DREAMZS (Vrugt and

Ter Braak, 2011) algorithm. RS SM observations were assimilated to provide a link

between the multiple models, the model estimated rainfall time series, the model

parameters and the modeled states. The overarching objective of this paper is to

provide a methodology to estimate rainfall through model input data reduction,

model inversion and data assimilation techniques, thereby providing a tool to eval-

uate rainfall estimates, model performance and RS SM observations.
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5.3 Model description

5.3.1 General overview

Three models were selected based on their wide-spread acceptance by the hydro-

logic community as well as their demonstrated ability to assimilate remotely sensed

soil moisture (Li et al., 2016). The Sacramento soil moisture accounting (SAC-SMA)

model simulates the dominant soil moisture characteristics whilst the probability

distributed model (PDM) simulates variable catchment soil moisture using a chosen

probability density function. The Hydrological model (HyMod) represents a simpli-

fied version of the PDM. Illustrations depicting the models key characteristics were

given in Figure 5.1, with only brief descriptions of the models provided here. Table

5.1 describes the parameters and the parameter limits used in the calibration of the

models. For more complete descriptions the interested reader is referred to the cited

papers.

5.3.2 SAC-SMA

A comprehensive description of the SAC-SMA model is given by NWSRFS (2002).

The model is applied using the 13 parameters recommended by Peck (1976). The

model consists of one surface layer and an upper and lower soil moisture layer. The

proportion of rainfall that contributes to direct runoff and infiltration is governed

by a variable impervious area. The upper soil layer is comprised of tension and

free water stores whilst the lower soil layer is comprised of tension and primary

and supplementary free water stores. Evapotranspiration is able to occur from both

tension water stores, as well as the surface water store. The extent to which free

water can supplement tension water due to losses by evapotranspiration is only

restricted in the lower layer. The lower layers primary and supplementary free water

stores contribute to base flow. The model consists of 6 states and 13 parameters.
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FIGURE 5.1: Diagrams representing the main characteristics of the
hydrological models used in the experiment.
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5.3.3 PDM

The PDM (Moore, 2007) assumes the soil moisture stores within a catchment to have

variable capacities that can be represented by a Pareto distribution. Upon incident

rainfall, parts of the catchment that have shallow soil moisture stores may be gen-

erating runoff whilst other parts were retaining water. The stores were also subject

to losing water via groundwater recharge and evapotranspiration. Surface runoff

is routed through a cascade of two linear stores, whilst subsurface flow is routed

through one linear store. Outflow from both stores were combined as streamflow.

The model consists of 4 states, one for each store, as well as 9 parameters.

5.3.4 HyMod

The hydrologic model (HyMod), is a derivative of the PDM (Moore, 2007). The model

itself consists of a nonlinear soil moisture store succeeded by a series of three linear

quick flow stores in parallel with a linear slow flow store. The model consists of 5

states, one for each store, as well as 5 parameters. The parameters govern the max-

imum storage capacity of the watershed, the spatial variability of the soil moisture

store, the separation of flow from the soil moisture store to the quick flow and slow

flow stores, and the residence time for the quick flow and slow flow stores, respec-

tively.
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TABLE 5.1: Parameters and ranges for hydrological models used in
the estimation process.

Parameter Description Units Range
SAC-SMA

Capacity
thresholds
UZTWM Upper zone tension water capacity mm 1.00− 150
UZFWM Upper zone free water capacity mm 1.00− 150
LZTWM Lower zone tension water capacity mm 10.00− 500

LZFPM
Lower zone free water
primary capacity

mm
10.00−
1.00× 104

LZFSM
Lower zone free water
supplemental capacity

mm 5.00− 400

UZK
Upper zone free water
withdrawal rate

day−1 1.00× 10−1−
7.50× 10−1

LZPK
Lower zone primary free
water withdrawal rate

day−1 1.00× 10−4−
2.50× 10−2

LZSK
Lower zone supplemental
free water withdrawal

day−1 1.00× 10−2−
8.00× 10−1

ZPERC Maximum percolation rate - 1.00− 500
REXP Exponent of the percolation equation - 1.00− 5.00

PFREE
Fraction percolation from upper to
lower zone free water storage

-
0.00−
8.00× 10−2

PCTIM
Minimum impervious fraction of
the watershed area

-
0.00−
1.00× 10−1

ADIMP Additional impervious area -
0.00−
4.00× 10−1

PDM
Cmax Maximum store capacity mm 1.00− 500

b
Pareto distribution exponent
that controls spatial
variability of Cmax

-
1.00× 10−4−
1.80

be Actual evaporation exponent - 0.10− 5.00
bg recharge function exponent - 0.20− 6.70
kb baseflow constant hour mm2 1.00− 2000
Cmin minimum store capacity mm 0.00− 500
St soil tension storage capacity mm 0.00− 500
k1 time constant for linear reservoir hour 1.00− 300

k2 time constant for linear reservoir hour
1.00× 10−7−
30000

HyMod
Cmax Maximum store capacity mm 1.00− 500

b
Pareto distribution exponent
that controls spatial
variability of Cmax

- 0.10− 2.00

α
Factor that distributes flow
between Rs & Rq

- 0.010 - 0.99

Rs Residence time of slow flow store days 0.00 - 0.10
Rq Residence time of slow flow store days 0.10 - 0.99
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5.4 Data set

5.4.1 General overview

This study used daily rainfall, PET and streamflow data from the study catchment

as input to the hydrological models. The DREAMZS algorithm in conjunction with

model input data reduction methods and a dual objective function were used to esti-

mate 125, 000 unique rainfall time series and model parameter distributions. 125, 000

unique rainfall timer series and model parameter sets were used in order to suffi-

ciently sample the posterior distributions. Remotely sensed soil moisture observa-

tions were then assimilated into the models for each of these rainfall time series and

model parameter sets.

5.4.2 The catchment of Warwick

Figure 5.2 presents the location of the Warwick catchment within the south-east

corner of Queensland, Australia, and the Condamine-Culgoa basin. The experi-

ment presented in this manuscript was conducted on a small subcatchment of the

Condamine-Culgoa basin; more specifically the Warwick catchment. The 1360 km2

catchment fosters a strong agricultural community that has been subjected to sev-

eral significant flood events. At times of prolonged drought, reaches of the river

have ceased to flow. The length of the perennial channels is 78 km whilst the max-

imum elevation difference along the channel is 308 m. The analysis period is from

the 1st of January 2007 through to the 31st of March 2013.

5.4.3 Rainfall, PET and streamflow

Daily rainfall data obtained from 8 gauges were aggregated to obtain a catchment

areal rainfall estimate using the Inverse Distance Weighting (IDW) method, whilst

monthly PET data from the Australian Water Availability Project (AWAP) (Raupach

et al., 2012) were used. In applying the IDW method the 5 gauges closest to the catch-

ment centroid were used; if for any given time-step there was no recorded observa-

tion at one or more of these gauges then observations from the next nearest gauge/s
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FIGURE 5.2: A locality map showing the study catchment of War-
wick, it’s location within the Condamine-Culgoa Basin and Australia.
The notation “m AMSL” in the legend denotes “meters above mean

sea level”.

were used. Continuous height measurements from a crump weir were converted to

streamflow using periodically updated rating curves (Queensland Government, 2017).

Daily streamflow and rainfall observations from the 1st of January 2007 to the 31st

of March 2013 for the Warwick catchment can be seen in Figure 5.3.
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FIGURE 5.3: SMOS (x) and AMSR-E (◦) remotely sensed soil moisture
observations for the Warwick catchment.

5.4.4 Remotely sensed soil moisture

Remotely sensed soil moisture data from the Soil Moisture Ocean Salinity (SMOS)

and Advanced Microwave Scanning Radiometer-Earth observing system (AMSR-

E) satellites were separately assimilated into the lumped hydrological models. The

AMSR-E soil moisture data set consists of 1078 observations, and were part of the

Land Parameter Retrieval Model (LPRM) National Aeronautics and Space Admin-

istration (NASA) Level 3 descending product for the time period beginning the 2nd

of January 2007 and ending the 29th of September 2011 (Amsterdam and GSFC, 2012).

The SMOS soil moisture data set consists of 581 observations, and were part of the

Level 3 descending product obtained from the Centre Aval de Traitement des Don-

nées SMOS (CATDS) for the time period beginning the 15th of January 2010 and end-

ing the 30th of March 2013. Since the night-time is the time of day when the surface

temperature is vertically and horizontally most homogeneous, the descending pass

observations were more likely to be representative of spatial soil moisture than the

ascending pass observations. Studies have shown the descending pass observations

to be more representative of the surface soil moisture (Draper et al., 2009). Conse-

quently, they were selected for this study. Soil moisture for the Warwick catchment

was obtained by averaging the 7 SMOS and 4 AMSR-E pixels that cover the War-

wick catchment. Even though both products have a similar footprint size, a different
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number of pixels were used as their centers have different locations. In the time pe-

riod in which both satellites were active and observing soil moisture there were 387

AMSR-E observations and 307 SMOS observations. There were 194 days in which

there were both AMSR-E and SMOS observations. Figure 5.4 shows the AMSR-E

and SMOS volumetric soil moisture data used in this study. It can be observed that

the AMSR-E soil moisture observations were continuously wetter than the SMOS

soil moisture observations.

FIGURE 5.4: SMOS (x) and AMSR-E (◦) remotely sensed soil moisture
observations for the Warwick catchment.

5.5 Experiment design

5.5.1 Rainfall estimation

The rainfall estimation process is described using Figure 5.5. The estimation of rain-

fall time series along with model parameter distributions began by reducing input

data to a dimensionality that is computationally feasible for modern parameter esti-

mation algorithms. As recommended by Wright et al. (2017a) the DWT is used to re-

duce the observed rainfall time series. The rainfall time series for the estimation pe-

riod was represented by 115 DWT parameters. The Daubechies 1, db1 wavelet and

4 levels of decomposition were chosen to allow for reasonable computational speed.

Only the approximation parameters were modified. The hydrological models used

a 100 day spin up period before a 1825 day estimation and 357 day evaluation pe-

riod. Using the DREAMZS algorithm a sample of 115 rainfall+d (model parameters)
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FIGURE 5.5: A representation of the process used to reduce model
input data and estimate rainfall for different hydrological models.
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was drawn. Rainfall was reconstructed from the parameters before being used as in-

put to the hydrological model. Estimates of both rainfall and streamflow were then

evaluated using an objective function that balances streamflow and rainfall. This

process is iterated until the sample trajectories were smaller than the R̂ convergence

diagnostic of 1.2 (Gelman and Rubin, 1992). For further detail regarding the rainfall

estimation process the reader is referred to Wright et al. (2017b). The streamflow

simulations generated in the rainfall estimation process were benchmarked against

a traditional calibration approach, which assumes no input error and only estimates

model parameters. DREAMZS was again used as the sampling algorithm with a

Gaussian objective function (Thiemann et al., 2001).

5.5.2 Assimilation of remotely sensed soil moisture observations

To assess the compatibility of remotely sensed soil moisture with different hydro-

logical models and rainfall and parameter estimates, the EnKF has been chosen to

assimilate remotely sensed soil moisture observations into the hydrological models.

A brief description of the EnKF is given in this section; for a more complete discus-

sion the reader is referred to Reichle et al. (2002).

Model error was taken into account by running each model with a 32 member en-

semble. The ensemble members were generated by adding random multiplicative

heteroscedastic Gaussian error to the input rainfall series. The standard deviation

(SD) of the Gaussian distribution was equivalent to 10% of the observation. The

model was propagated forward in time until an observation was available for as-

similation.

When an observation was made available the state vectors were, when possible,

transformed to unitless coordinates. Descriptions of the states for each of the models

were given in Table 5.2. For the SAC-SMA model this is written as

XSAC−SMA
i = [UZTWCi/UZTWM UZFWCi/UZFWM LZTWCi/LZTWM

LZFSCi/LZFSM LZFPCi/LZFPM ADIMCi/(UZTWM+ LZTWM)]T,
(5.1)
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TABLE 5.2: Hydrological model states used in the data assimilation
process.

State Description
SAC-SMA Units

UZTWC Upper zone tension water content mm
UZFWC Upper zone free water content mm
LZTWC Lower zone tension water content mm

LZFSC
Lower zone free water
supplemental content

mm

LZFPC Lower zone free water primary content mm
ADIMC Additional impervious area storage content mm

PDM
S Soil moisture store mm
Sbf1 Baseflow store mm
SurSto0 1st surface store mm
SurSto1 2nd surface store mm

HyMod
x1 1st surface store mm
x2 2nd surface store mm
x3 3rd surface store mm
x4 Baseflow store mm
x5 Soil moisture store mm

where XSAC−SMA
i is the SAC-SMA state vector at time step i. For the PDM this is

written as

XPDM
i = [S/Smax Sbf1 SurSto0 SurSto1]

T, (5.2)

where XPDM
i is the PDM state vector at the time step i. For HyMod this is written as

XHyMod
i = [x1 x2 x3 x4 x5/Cmax]

T, (5.3)

where XHyMod
i is the HyMod state vector at time step i. To be compatible with the

volumetric soil moisture observations from RS the saturated soil moisture model

states need to be scaled by their associated porosity. The dominant soil type in War-

wick has been identified as loamy sand (CSIRO, 2017), for which the porosity was

determined to be 0.45 (Rawls et al., 1982). XSAC−SMA
i was transformed to the obser-

vation space by HSAC−SMA (the SAC-SMA transformation matrix), where
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HSAC−SMA = [0.45 0 0 0 0 0]. (5.4)

XPDM
i was transformed to the observation space by HPDM , where

HPDM = [0.45 0 0 0]. (5.5)

XHyMod
i was transformed to the observation space by HHyMod, where

HHyMod = [0 0 0 0 0.45]. (5.6)

The RS soil moisture observations were assimilated without applying bias correction

techniques such as Cumulative Distribution Function (CDF) matching. The innova-

tions in the assimilation routine were defined as

innovi = Obsi −HmodelXmodel
i , (5.7)

where innovi and Obsi were the innovations and the observations at the ith time-

step, respectively. Hmodel is the transformation matrix for a selected mode and trans-

forms saturated soil moisture into volumetric soil moisture. Xmodel
i is the state vector

at time step i for a selected model..

5.6 Results and discussion

5.6.1 Estimated rainfall and impact on streamflow forecast

Table 5.3 shows the root mean square error (RMSE) results for the traditional cal-

ibration and rainfall estimation approaches, demonstrating that the use of model

input data reduction and a dual objective function was able to produce superior

streamflow simulations compared to a traditional calibration approach in which

only model parameters were estimated. A reduction in RMSE between observed

and simulated streamflow was achieved for the two calibration approaches for each
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model. Yet, not all models achieved the same reduction in RMSE. The observed dif-

TABLE 5.3: Maximum A Posteriori (MAP) and SD of RMSE obtained
for a traditional calibration approach and joint calibration and rainfall

estimation approach.

RMSE streamflow [m3s−1]
Traditional Rainfall

Model MAP MAP
SAC-SMA 0.3606 0.2154
HyMod 0.4828 0.4141
PDM 0.4010 0.3452

ference in the reduction in RMSE between models can be due to over-parameterization

of a model or a model’s inadequate ability to account for complex dynamics within a

catchment. To determine this, the rainfall estimates for each model will be analyzed.

A cumulative time series of the observed and estimated rainfall is displayed in Fig-

ure 5.6. It is worth noting that the mean rainfall estimates from the SAC-SMA model

were considerably closer to the observed rainfall than those obtained from the PDM

and Hymod. The rainfall estimated using the PDM and HyMod has a significantly

smaller variance than the variance in rainfall estimated by the SAC-SMA. The mean

rainfall estimates from all of the models were drier than the observed rainfall. The

cause of this phenomenon cannot be determined from this study. During the rainfall

estimation period the total catchment areal rainfall volume using the IDW method

is calculated to be 3205 mm. Of the 5 main rain gauges used, the minimum and

maximum total catchment areal rainfall volume is 2764 and 3406 mm, respectively.

Combined with the fact that dry rainfall estimates produced superior streamflow

to that obtained from using the observed rainfall, this suggests that the spread of

rain gauges provides insufficient density to capture the true catchment areal rainfall

volume.

5.6.2 Daily mean innovations

Daily innovations for each of the ensemble members were averaged to produce a

mean for that time step. The daily mean innovation for each of the 125, 000 rainfall

time series were shown in Figure 5.7. Each of the panels represent a different model

and RS SM combination. If the modeled soil moisture and RS SM were unbiased it
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FIGURE 5.6: Cumulative rainfall series for the Warwick catchment.
Observed rainfall is plotted using the black line while the mean
and 5th to 95th percentile rainfall estimates were represented by the

dashed red line and grey shading respectively.

is expected that the innovations fluctuate about zero. Deviations from this demon-

strate bias in either the modeled SM and/or the RS SM. When assimilating SMOS RS

SM both the SAC-SMA model and HyMod demonstrate low overall bias. This indi-

cates that SM modelled by the SAC-SMA model and HyMod is in agreement with

the SMOS RS SM observations. A positive bias, in which the means of the inno-

vation time series were consistently larger than 0, was observed when assimilating

the AMSR-E RS SM into both the SAC-SMA model and HyMod. Interestingly, this

observation was reversed for the PDM. A low bias is observed when assimilating
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FIGURE 5.7: Daily innovation mean for the ensembles. The symbols
represent the mean daily innovation mean for the 125,000 rainfall
time series and model parameter sets whilst the grey shading indi-
cates the 5th to 95th percentile daily innovation mean. Each panel

represents a different model/RS SM assimilation combination.

AMSR-E RS SM and a negative bias was observed when SMOS RS SM was assimi-

lated. It can be observed in Figure 5.4 that, when compared to the SMOS RS SM ob-

servations, the AMSR-E RS SM observations show a low fluctuation about the mean.

This suggests that both the SM simulated by the SAC-SMA and HyMod capture the

fluctuations in SM that were observed by SMOS. Conversely, as the innovation mean

fluctuates approximately about zero when the PDM assimilates AMSR-E soil mois-

ture, the SM simulated by the PDM does not capture the SM fluctuations observed

by SMOS. These findings demonstrate that innovations from assimilating unscaled

RS SM observations will not automatically lead to biased assimilation results . Bi-

ased innovations may be present due to a combination of poor rainfall estimates and

soil moisture observations depending on the applied model. Unbiased innovations
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alone do not guarantee adequate model simulations or rainfall estimates. Areal rain-

fall obtained from gauged observations does not produce the best streamflow sim-

ulations. This suggests that the rainfall observations may not be representative of

catchment rainfall.

When evaluating a rainfall-runoff models suitability for forecasting purposes it is es-

sential that the model is able to adequately simulate past streamflow observations.

The results demonstrate that good streamflow simulations and unbiased innova-

tions can be obtained from biased rainfall estimates. Consequently, careful consid-

eration needs to be paid towards uncertainty in all components of the water cycle

before claims were made that a rainfall-runoff model is able to simulate good stream-

flow for the right reasons.

5.6.3 Innovation mean for the assimilation period

Over the course of the assimilation period the innovation mean at each time step

will ideally fluctuate about zero. The mean of the innovation means for an entire

time series is calculated for each of the 125, 000 rainfall time series and parameter

sets, models and RS SM product and presented in Figure 5.8. The best represen-

tations were centered around 0 and have rainfall volumes closest to the observed

rainfall volume over the rainfall estimation period. When assimilating SMOS SM,

FIGURE 5.8: The left panel is 3-D histogram showing the mean of
the daily innovation mean for each of the 125,00 rainfall time series
and model parameter sets and the estimated rainfall volume for the
estimation period for each of the models and RS SM combinations.
The right panel zooms into the 3-D histogram for the case when the

SMOS RS SM product is assimilated into the SAC-SMA model.
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the innovations from the SAC-SMA model were largely contained between 0.01 and

−0.03 (mm/mm). The innovations for the 5 remaining experimental combinations

do not have both positive and negative values. Consequently, some bias is present.

The rainfall volumes estimated with the SAC-SMA model were contained between

2900 and 3300 mm. This variance in estimated rainfall volume is larger than that

shown by the HyMod and PDM rainfall estimates. Further, the extent of rainfall vol-

umes obtained by the SAC-SMA model encompasses the observed rainfall volume

of 3205 mm for the Warwick catchment. This suggests that the unbiased rainfall

estimates obtained using the SAC-SMA will benefit from the unbiased SM obser-

vations from SMOS. Without CDF matching, the SAC-SMA configuration will not

benefit from assimilating AMSR-E SM observations. When assimilating SMOS SM

observations into HyMod the mean of innovation mean is close to 0. Conversely, the

biased rainfall estimates obtained from HyMod demonstrate that the rainfall esti-

mates were unrealistic and that the innovations alone provide insufficient evidence

to draw a positive conclusion. This bias is made more evident by the increased

discrepancy between the innovations obtained for SAC-SMA and HyMod when as-

similating AMSR-E observations, and the innovations obtained for SAC-SMA and

HyMoD when assimilating SMOS observations. Conversely, the low bias observed

for innovations in the PDM/AMSR-E experiment demonstrates that assimilating a

biased soil moisture product into a biased model or model with biased rainfall esti-

mates may still yield good results. To obtain robust streamflow forecasts unbiased

models need to be paired with unbiased rainfall observations/forecasts/estimates

and unbiased RS SM observations. Uncertainty in all components of the water cy-

cle needs to be considered.The demonstrated methodology can be used as tool to

estimate rainfall, or reject models and RS SM observations for a given catchment.

5.7 Conclusions

Previous studies have demonstrated that rainfall estimates obtained via the sole in-

version of either streamflow or soil moisture are often unrealistic or lack temporal

specificity. This research builds upon a previously developed rainfall estimation
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methodology by analyzing the rainfall estimates using innovations from the assim-

ilation of RS SM data. The methodology presented can be used by hydrologists to

make informed choices regarding model choice and satellite choice. Permutations

of estimated rainfall time series, model parameter sets, hydrological models, and RS

SM data are analyzed. Rainfall estimates were obtained for the SAC-SMA, HyMod

and PDM rainfall-runoff models via a process that involved the dimensionality re-

duction of input data using the DWT. An objective function that balances estimates

of streamflow and rainfall was used in conjunction with the sampling algorithm

DREAMZS to simultaneously estimate model parameters and rainfall time series.

Cumulative plots of the estimated rainfall time series showed that superior stream-

flow estimates could be simulated with model dependent rainfall estimates, and

that all models demonstrated improved streamflow simulations with lower thant

observed rainfall time series estimates. Further, the range of estimated rainfall time

series was found to be dependent on the model. Data assimilation using the EnKF

produced innovations close to 0 when SMOS and AMSR-E RS SM were assimilated

into HyMod and PDM respectively. Yet, the rainfall estimates from these models

were still discarded as their rainfall volumes during the rainfall estimation period

were outside the range of rainfall volumes observed at the gauge. Realistic rainfall

estimates and EnKF innovations were obtained with the SAC-SMA and SMOS RS

SM. To be considered robust, rainfall estimates obtained via inversion need to pro-

duce superior streamflow simulations, be able to simulate soil moisture states that

exhibit little to no bias when compared to RS SM observations, and be within an

acceptable range of gauge based rainfall observations.
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Chapter 6

Conclusions and further research

6.1 Overview

The research conducted throughout this thesis made steps towards increasing the

skill of flood forecasts. Over three tasks this research developed and utilized tech-

niques that enhance the hydrological communities’ understanding of uncertainty in

rainfall observations and the influence those uncertainties have on streamflow sim-

ulations from rainfall-runoff models. As a greater understanding of uncertainty in

rainfall observations and the way in which those observations influence streamflow

simulations is developed, techniques to condition rainfall forecasts become more re-

liable. As rainfall forecasts become more reliable, flood forecasting skill increases.

For this research to be operationalized further work involving a variety of hydro-

logic basins and models needs to be conducted. The methodologies described would

need to be run for each catchment such that QPF’s can be conditioned on rainfall es-

timates that are known to provide good hydrological simulations.

6.2 Summary of main findings

6.2.1 Hydrologic model input data reduction

Rainfall and its uncertainty can be estimated by describing rainfall observations us-

ing parameters and utilizing model inversion techniques. As it is computationally

infeasible to estimate a unique parameter for each rainfall observation, there exists a
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need to be able to efficiently and effectively reduce rainfall observations to a smaller

number of parameters. To ensure the robust inversion of rainfall-runoff models to

obtain rainfall estimates, methods to reduce the dimensionality of hydrologic model

input data were explored. Due to their wide-spread acceptance as transforms for

model input data reduction in fields outside of hydrology, the DCT and DWT were

used to compress and reconstruct rainfall observations from the MOPEX data set.

Succinct descriptions of the DCT and DWT were given along with an outline of pos-

sible benefits each of the transform may provide. High- or low-frequency param-

eters of the DCT can be estimated. Conversely, if the DWT is used, a modeler can

choose to estimate a combination of either time or frequency DWT parameters. Us-

ing standard simulation performance summary metrics, descriptive statistics, and

peak errors to compare the ability of compressed DWT and DCT transform parame-

ters to reconstruct MOPEX rainfall data, it was determined that the DWT was most

effective at preserving high-magnitude and transient rainfall events. After analy-

sis of the bias, variance, skewness, and kurtosis, it was demonstrated that rainfall

reconstructions from the DWT were closer to the observed rainfall data, and that

the DWT was more effective at preserving long term trends. Consequently, it is rec-

ommended that the DWT be used as a model input data reduction technique for

hydrologic studies that have both short and long time steps.

6.2.2 Rainfall estimation

Since the DWT was found to be more effective than the DCT at preserving rainfall

observations, the DWT was used to reduce model input data for the estimation of in-

put uncertainty. While the DWT can be used to reduce the dimensionality of model

input data that originates from any measurement instrument, in this study the DWT

was only used to reduce the dimensionality of gauge-based rainfall estimates. Using

the DREAM(ZS) sampling algorithm,and a likelihood function that balances input

rainfall and streamflow error allowed for multiple configurations of DWT param-

eters to be used to estimate model parameter distributions and entire rainfall time

series. This methodology allows rainfall to be estimated when none was observed.
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When compared to the benchmark sole estimation of model parameters, the simul-

taneous estimation of DWT rainfall and model parameters yielded realistic rainfall

estimates and streamflow simulations. The RMSE of these streamflow simulations

was improved by a factor of up to 1.78. Consequently, a methodology to realistically

estimate rainfall time series has been developed. This methodology was used in a

subsequent study that used 3 models to compare rainfall time series, their respec-

tive model parameters, and their ability to simulate streamflow and soil moisture

observations.

The use of the DWT as a model input data reduction technique in conjunction with

model inversion techniques provides an increased understanding of hydrologic un-

certainty by providing a technique that both improves streamflow simulations and

estimates rainfall input, including when none was observed. The efficiency of the

model inversion process along with computational power place an upper limit on

the resolution of uncertainty and length of rainfall time series that are able to esti-

mated.

6.2.3 Analysis of rainfall estimates

Past attempts to estimate rainfall through the inversion of streamflow or soil mois-

ture have been either unrealistic or lacked temporal specificity respectively. Conse-

quently, this study filled the need for the development of a methodology that con-

strains rainfall estimates obtained through the inversion of streamflow observations

with soil moisture observations. The developed methodology utilized past studies

that reduced model input data and simultaneously estimated model parameter dis-

tributions and entire rainfall series. These techniques were applied to the SAC-SMA,

HyMod, and PDM rainfall-runoff models. Cumulative plots of estimated rainfall se-

ries demonstrated that rainfall estimates are model dependent. Compared to the

benchmarks in which only model parameters are estimated, all models were able to

obtain superior streamflow estimates when both rainfall time series and model pa-

rameters were estimated. Analysis of EnKF innovations obtained from each model

when different RS SM products were assimilated demonstrated that innovations
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close to zero can be obtained for models that have biased rainfall estimates. Rain-

fall estimates that were close to the gauge based observations were obtained from

the SAC-SMA model. Further, innovations either side of zero were obtained when

SMOS RS SM observations were assimilated into the model parameter and rainfall

time series estimates obtained from the SAC-SMA model. To be considered robust,

rainfall estimates obtained via the inversion of streamflow need to be able to; pro-

duce superior streamflow simulations, simulate soil moisture states that exhibit little

to no bias when compared to RS SM observations, as well as estimate rainfall that is

within an acceptable range of gauge based rainfall observations.

It has been successfully demonstrated that rainfall estimates can be constrained by

soil moisture observations. Different configurations of models and choice of RS SM

product for assimilation demonstrate white noise EnKF innovations. In some sit-

uations this is a result of the assimilation of the biased AMSR-E soil moisture into

models that obtain biased rainfall estimates. When the unbiased SMOS RS SM prod-

uct was assimilated into the the SAC-SMA model innovations either side of 0 were

obtained, providing an additional element of physical realism to the rainfall retrieval

process. The results obtained do not indicate that the assimilation of soil moisture

observations restricts the efficacy of the rainfall retrieval process in the presence of

model structural inadequacy.

6.3 Opportunities for further research

The provision of improved QPF’s is expected to increase flood forecast skill. Af-

ter being constrained by RS SM observations, the rainfall estimates obtained using

model input data reduction and inversion techniques can be considered realistic.

Further, in comparison to the gauge based rainfall observations, the rainfall esti-

mates simulate superior streamflow. These rainfall estimates can be used in place of

rainfall observations to condition and improve QPFs.

Since the reduction of rainfall dimensionality in hydrology is a relatively new con-

cept there are still many areas that can be explored. Model input data can be reduced
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using any number of different transforms. As the choice of analysis wavelet influ-

enced how errors were corrected for, the exploration of different wavelet families

in the reduction of model input data may be used to extract information about the

uncertainties present in the modeling process.

Since, there is a limitation on the number of transform parameters that can be esti-

mated within a feasible time frame the identification of transform parameters that

convey the most detail may increase the effectiveness of the estimation process.

However, doing this may mean that parameters are only estimated for rainfall events

that show the greatest fluctuation in observed rainfall. An alternative approach

would be to selectively estimate rainfall parameters at times when the simulated

streamflow deviates significantly from the observed streamflow.

For the estimation process to converge in a desirable time frame it is more impor-

tant that the search space of the parameter estimation problem be kept to a mini-

mum than it is that the number of parameters be kept to a minimum. The use of

informed priors places a restriction on the search space and the way it is sampled.

Assumptions about rainfall errors can aid in the determination of informed priors.

Consequently, it is expected that by developing methods for which informed priors

can be used in the rainfall estimation process, a more efficient and effective rainfall

estimation process could be developed.

An analysis of rainfall estimates obtained using likelihood functions that do not in-

volve the specification of a multiplicative error structure for rainfall will provide

methods for which further knowledge regarding the structure of rainfall errors can

be obtained. Developing a likelihood function that involves soil moisture will re-

strict the possible rainfall time series and model parameters that can be estimated.

This will allow for a greater understanding of rainfall and model structural uncer-

tainty.

It is expected that performing this analysis on a variety of models, SM data sets, and

catchments with different sizes and climate will provide further validation of the ro-

bustness of the techniques developed. Lastly, streamlining of the rainfall estimation

and constraint process will create a user friendly approach that promotes further
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research.
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