

Flaws in our understanding and perception of flood risk

Dr Rory Nathan

A/Prof Hydrology & Water Resources University of Melbourne

> Technical Director Jacobs

- The 2011 flood event in Brisbane
- Engineering (and media) failings
- Communicating risk
- Estimating flood risk
- Understanding and resilience
- Conclusions

One-Month Rainfall Anomalies

Bureau of Meteorology

Bureau of Meteorology

0 min ALL I MAN 10/01/2011 03:16 PM

Rocklea (wide view)

Larger Map ►

MELBOURNE Flash Flooding Toowoomba Jan 2011

Understanding Floods: Q&A (image from Nicole Hammermeister)

Kapernick's bridge

10th Jan 2011

46 mins later

Time

Wivenhoe Dam overflows

Photo: Dean Saffron

Time

"Dam's releases blamed for inundation"

"After a week of waiting, Seqwater blames it on the rain"

Big rains cause big floods

Flood volume = 8 "SydHarbs"

"Dam's operation model was inaccurate"

"Wivenhoe Dam surge blamed for farm losses"

"Experts say dam added to Queensland flood damage"

Brisbane Courier Mail, March 7th

- Those most informed were conflicted out from speaking publicly
- Those remaining showed a willingness to:
 - speak outside field of expertise
 - offer an opinion based on incomplete knowledge
 - join in the blame game
- Subject matter arrogance over situation-specific knowledge
- Naiveté around political context
- Limelight over substance
- Inability to tell a story simply

The facts do not speak for themselves

"10,000 properties thought to be safe went under in Brisbane flood"

"WRONG Q!"

Let's simulate Mother Nature:

- adopt a statistical distribution from the historic record
- set parameters to ensure "100 year flood" = 100 m³/s
- synthetically generate 100 years of floods
- do this 100 times
- observe different patterns of flood behaviour

Number of "100-year" floods, N	Probability that given number of floods occur in 100 years
0	37%
≥ 1	63%
≥ 2	26%
≥ 3	8%
≥ 4	2%
≥ 5	0.3%

Communicating risk is hard

- Floods are natural and occur at irregular intervals
- Large rainfalls are the most important factor
- "Flash floods"
 - Rise very quickly
 - are typically on small catchments
 - are very hard to predict
 - pose a real threat to life

"Riverine floods"

- occur more slowly
- are associated with larger catchments
- can be forecast and predicted
- pose a threat to property rather than to life

- Incorrect perceptions:
 - You are "safe" above the flood planning level
 - Dams, levees, gates (etc) "flood-proof" the community
 - A "100-year" flood only occurs once in 100 years
 - If the "100-year flood" is exceeded then someone is to blame
- In reality:
 - There is always residual risk
 - It is a risk you are exposed to every year
 - The bigger the rainfall, the fewer the options to mitigate
 - Engineering (standards-based) approaches alone will fail
 - Strategic (risk-based) adaptive approaches are required

MELBOURNE Engineering and Planning Failings

- Acknowledging difference between:
 - "100-year flood" and an "actual event"
 - use of <u>estimation</u> (for risk) and <u>prediction</u> (for forecasting)
- Standards-based vs risk-based thinking
 - "100-year" flood (etc) represents a tolerance for risk
 - it should not be seen as a standard
- Understanding and communication of uncertainty
- Deterministic rather than stochastic methods of estimation (and forecasting)

"Q100 Sunk"

"The question is squarely: Is it time to move away from the Q100 mentality towards a different approach to risk management?"

MR P CALLAGHAN SC, Counsel Assisting, 26th Oct 2011

A simplistic act-of-faith divorced from reality

Different storms of same depth can yield <u>markedly</u> different floods

Statistics used to mimic randomness of Mother Nature

(Hydrologic) complexity cannot always be ignored

 It is often necessary to consider joint probabilities in an explicit manner

Nathan, R.J., Weinmann, P.E. and Hill, P.I. (2002): Use Of A Monte Carlo Framework To Characterise Hydrological Risk, *ANCOLD Bulletin* - Issue No. 122, 55-64.

- 1. Accept absolute protection is not possible
- 2. Promote some flooding as desirable
- **3.** Base decisions on understanding of risk and uncertainty
- 4. Recognise the future will be different from the past
- 5. Use portfolio of responses rather than single measure
- 6. Use limited resources efficiently and fairly
- 7. Be clear on responsibilities for governance and action
- 8. Communicate risk and uncertainty effectively and widely
- 9. Engage with stakeholders
- **10.** Reflect local context and integrate with other planning

Sayers et al (2014): Strategic flood management: 10 golden rules to guide a Sound approach, *Int J River Management* DOI: 1080/15715124.2014.902378

Relative factors in flood resilience

Relative Importance To Flood Resilience Planning and communication

Community understanding and actions

Engineering measures

Accuracy of flood risks

Flood Magnitude

OP CENTRE FOR DISASTER MANAGEMENT AND PUBLIC SAFETY

- Multi-disciplinary
- All hazards and all phases of disaster management
- Global themes and engagement

CDMPS

Training

Research

Launched by University of Melbourne in April 2014

CENTRE FOR DISASTER MANAGEMENT AND PUBLIC SAFETY

Research Priorities

- Priority Area 1: Understanding Natural Disasters
- Priority Area 2: Enhanced Decision Making
- Priority Area 3: Technology
- Priority Area 4: Strengthening Community Resilience
- Priority Area 5: Mission Critical Communications
- *Priority Area 6:* Policy

Training

- Community Education
- Intensive Training
- Executive Training
- Short Courses
- Online Training
- Formal Training: Masters level

- Absolute flood protection is not possible
- We need to:
 - continuously improve
 - resist early blame
 - stay well within our fields of competence
 - communicate risk clearly
 - cater for uncertainty
- Estimation of complex flood risk is tractable and requires stochastic rather than deterministic techniques
- Strategic flood management requires true understanding of flood risk and rejection of traditional "standards-based" approaches

Enhancing Flood Resilience

Difference between preferred terminology and understanding of flood risk

THE UNIVERSITY OF

MELBOURNE

Influence of understanding flood risk on resilience levels (actions, preparedness, worry)

O'Sullivan et al (2012): Enhancing flood resilience through improved risk communications. *Natural Hazards and Earth System Science* 12(7) 2271-2282.

- Partners:
 - Association of Public Safety Communications Officials
 - IBM Research Australia
 - AURIN. Australian Urban Research Infrastructure Network
 - Surveying & Spatial Sciences Institute (SSSI)
 - Institute of Transport Studies (Monash)
 - University of Melbourne Emergency Services Club
 - Gajah Mada University

Supporters:

- International Federation of Surveyors (FIG)
- ✤ V3 alliance
- ✤ AGL
- Global Spatial Data Infrastructure Association
- Edith Cowan University
- Victoria University
- Singapore National University
- Lund University
- United Nations initiative on Global Geospatial Information Management

Engineers' Failings

MELBOURNE Engineers' Failings

THE UNIVERSITY OF **MELBOURNE**

© Copyright The University of Melbourne 2009