

BNH CRC: RESEARCH ADVISORY FORUM 17-18 November 2015

PROJECT B8: ENHANCING RESILIENCE OF CRITICAL ROAD STRUCTURES: BRIDGES, CULVERTS AND FLOOD WAYS UNDER NATURAL HAZARDS

Professor Sujeeva Setunge, Dr. Hessam Mohseni

RMIT University

OUTLINE

- 1) Project overview and program
- 2) Progress since the last RAF and to date
- 3) Numerical studies of flood-ways and bridges
 - a) Flood
 - b) Bushfire
 - c) earthquake
- 4) Economic consequence assessment of flood events
- 5) Decision tree conceptualisation
- 6) Way forward
- 7) Questions / Comments

PEOPLE

- 1) Prof. Sujeeva Setunge (RMIT)
- 2) Prof. Chun-Qing Li (RMIT)
- 3) Prof. Darryn McEvoy (RMIT)
- 4) A/Prof. Kevin Zhang (RMIT)
- 5) Prof. Priyan Mendis (Melb. Univ.)
- 6) Dr. Tuan Ngo (Melb. Univ.)
- 7) Prof. Karu Karunasena (USQ)
- 8) Dr. Weena Lokuge (USQ)
- 9) Prof. Dilanthi Amaratunga (Huddersfield , UK)
- 10) Dr. Hessam Mohseni
- 11) Dr. Buddhi Wahalathantri
- 12) Dr. Nilupa Herath
- 13) Dr. Jane Mullet

- Ms. Leesa Carson, Geoscience Aust.
- Mr. Ralph Smith, DFES, WA
- Dr. Ross Prichard (TMR Qld)
- Mr. Nigel Powers (VicRoads)
- Prof. Wije Ariyaratne (RMS NSW)
- Dr. Neil Head, Attorney General Dept.
- Mr. Myles Fairbairn, Locker Valley Regional Council

HDR students

- Mr. Farook Kalendhar (RMIT scholarship)
- Mr. Albert (Yue) Zhang
- Ms. Maryam Nasim (APA)
- Mr. Amila Gunasekara (APA)
- Mr. Ismail Queshta (IPRS)

RESEARCH PROGRAM – STAGE 1 CURRENT PROJECT- METHODOLOGY

Quantitative Risk Assessment $R = H_z \times V_u \times C_q$

STAGE 2 – SECOND PHASE OF THE 7 YEAR PROJECT

- Expand the outcomes to cover national road authorities and Local govt. interests
- Strengthening options traditional and emerging techniques
- Optimised decision making on hardening of structures
 - What, where, when and how to strengthen structures
 - Non asset solutions
- Decision support software tool

MILESTONES - ON TRACK

- Failure of road structures under natural hazards report 1
- Community impact of failure of road structures Report 2
- Failure mechanisms and vulnerability modelling Report 3
- Analysis of design standards Report 4- in progress
- 3 Journal papers, 4 Conference papers
- Industry workshops

END USER ENGAGEMENT

- Workshop 1 Lockyer Valley council, July 2014
- Workshop 2 QTMR to finalise the report 1, Nov. 2014
- Researchers spent a week in Lockyer Valley, Feb. 2015
- Workshop 3 LVRC/QTMR Report 2, March 2014
- Workshop 4 VicRoads , April 2014
- Meeting with RMS NSW, July 2015
- Workshop 5 Mini Symposium, Wider stakeholders, July 2015
- Presentation to Austroads Bridge Task Force, October 2015
- Presentation to RMS bridge conference 2 Dec. 2015

OUTCOMES TO DATE

- The methodology for evaluating vulnerability based on structural capacity established.
- Case studies of failure of bridges under natural hazards completed –methodology of analysis demonstrated
 - Flood Lockyer Valley bridge case studies
 - Bushfire Effect of fire on concrete bridges
 - Earthquakes Lockyer Valley girder bridge under earthquake
- Methodology for establishing damage curves based on cost of recovery developed, with a floodway case study.
- Community resilience study conducted researchers spent a week in Lockyer valley interviewing community
- A method to quantify the economic impact of failure of road structures established
- Decision tree is being developed to capture failure of structures and assist in decision making

ANALYSIS OF ROAD STRUCTURES EXPOSED TO NATURAL HAZARDS

AN UPDATE: ADAPTATION REQUIREMENT IN VICTORIA

Fable 6.10: Summary of Extreme Weather Related Risks to	Infrastructure Types
---	----------------------

	Consequences	Actions	Risk	
Road Surfacing	Increased bushfires and flood may cause more frequent and more extensive damage to road surfaces	Investigate locations of vulnerability, possible	Important	
Pavement Structure	Greater likelihood of widespread flooding could result in pavement damage and long term reduction of life for affected pavements.	protective measures, and flood flow management measures.		
Drainage	Greater likelihood of widespread flooding could result in damage to drainage systems.			
Roadsides	Greater likelihood of bushfires, floods and storms will cause difficult conditions for many plants and animals.			
Structures	Greater likelihood of widespread flooding and storms could result in damage to structures and their footings.			
ITS/Electrical Assets	Greater reliance on traffic management systems to reduce congestion, ensure smooth traffic flow especially during extreme weather and emergency management events	Investigate potential locations for installation of uninterrupted power supply	Important	
Operations	Greater pressure on emergency response resources.	No action required at this stage.	Important	
	Decreased operational impacts of black ice and snow on roads	No action required	Positive	

VicRoads Climate Change Risk Assessment, 2015

Figure 5.3 Design Life of Different VicRoads Asset Categories (Adapted from (UK Highways Agency, 2011))

MAJOR FAILURE MECHANISMS OF BRIDGES UNDER FLOOD

LOCKYER VALLEY INSPECTION REPORT

Damage to abutment & headstock

Damage due to debris

Completely washed away

Damaged relieving slab

BRIDGES CASE STUDY

Bridge Name	Description of damage	Repair Cost (Aus\$)	Estimated Replacement cost (Aus\$)	DI
Belford Bridge	Scour and slumping of the southern upstream rock spill; Relieving slab and approach road kerb has been undermined; Substantial crack appeared in the downstream western wing wall	91,592	220,776	0.41
Clarke Bridge	Edge delineation had been damaged by debris; Some bank scour on the downstream side of the bridge	21,535	98903	0.21
Logan Bridge	Whole section of one approach has been damaged Significant scour of the eastern abutment Headstock has been undermined Cracks noted in the surfacing behind the eastern abutment	67,547	290,965	0.23
The Willows Bridge	Both approaches sustained substantial damage Bridge guardrails ripped off Upstream edge of the bridge broken	71,301	85,485	0.83

Di Value Comparison

DAMAGE CURVES FOR BRIDGES UNDER FLOOD

FLOOD-WAYS MAJOR ISSUES

Tenthill Creek and Left Hand Branch rd

Washout

Cracking

Undermining

Scouring

Common failure mechanisms

Estimated Damage Index Vs Actual Damage Index

ID No	Description of damage	Repair cost (\$)	Estimated Replacement cost (\$)	DI
4	Damage to rock protection, undermined and minor cracking	91,592	185,776	0.49
7	Seriously undermined and apron has been damaged	91,535	98,903	0.93
8	Cracking of floodway	67,547	109,965	0.61
16	seriously undermined and cracked	113,301	134,485	0.84

FLOOD-WAYS NUMERICAL STUDIES – IN PROGRESS

BRIDGES UNDER BUSHFIRE EXPOSURE/OTHER FIRE HAZARDS

Concrete bridge - Wright, W., et al., 2013

Reinforced concrete

- Concrete spalling
- Concrete cracking
- Concrete delamination
- Compressive strength reduction
- Steel reinforcement and prestressed strands strength reduction

Steel bridge - Wright, W., et al., 2013

Steel

- Steel distortion
- Deflection of steel elements
- Formation of plastic hinges
- Buckling (web buckling)
- Reduction of tensile and yield strength
- Post-fire steel toughness
- Steel pitting & flaking
- Paint and coating degradation

Timber bridge - Long Gully Bridge WA (7 News)

Timber

- Charring (charring rate)
- Strength loss
- Elasticity loss

Local failure and global structural integrity

BRIDGES UNDER BUSHFIRE EXPOSURE/OTHER FIRE HAZARDS

- Constructed in 1964;
- Superstructure consists of 3 spans formed from 14 precast prestressed concrete deck units
- Reinforced concrete cast insitu columns, abutments and crossheads;
- 2 piers (5 piles to a crosshead in each pier);
- 4 piles support each Abutment

500c Isotherm method

CONCRETE BRIDGE CASE STUDY

Exposure Time	Deck Units (Columns						
30 minutes	Stiffness has dropped by close to 20%.					Moment capacity has dropped by 5%, compression capacity					city
					has dropped by 13%, and stiffness has dropped by 60%.						
	No risk of failure.										
	Small amount of extra	damage fro	m deflectior	n likely.		No risk of	failure.				
60 minutes	Sagging moment capac	acity has dropped by 35%, and stiffness			Moment	capacity has o	dropped by	/ 29%, compre	ssion capa	acity	
	by 33%.				has dropped by 29%, and stiffness has dropped by 75%.						
	Failure unlikely.	1		Firo	imna	act on co	nhcroto bri	dao			
	Extra damage from de	0.9		1110	mpa			uge		\square	
90 minutes	Sagging moment capa	0.8									city
	by 42%.	0.0								·	
		0.7									
	Failure unlikely.	<u>ම</u> 0.6 –									
	Extra damage from de	<u> </u>									
120 minutes	Sagging moment capa	Jag									
	by 48%.	Dal									l by
		0.3			\checkmark						
	Flexural Failure possit	0.2									
	Extra damage from de										
		0.1									
		0 🛹									
		0	2	20	40		60	80	100	120	
						Minutes of	Fire Exposure				
					- Slab Ur	nit – C	olumn —— B	ridge			

CONCRETE BRIDGE - NUMERICAL ANALYSIS – IN PROGRESS

CONCRETE BRIDGE – EARTHQUAKE

DAMAGE STATES AND CORRESPONDING C/D RATIOS USED IN THE STUDY (HWANG ET AL., 2000)

Damage state	Description	C/D Ratios
No Damage	Minor inelastic response post-earthquake damage -limited to narrow cracking in concrete. No permanent deformations	$\frac{C}{D} \ge 0.5$
Repairable damage	Inelastic response - concrete cracking, reinforcement yield and minor spalling of cover concrete Extent of damage should be sufficiently limited structure can be restored essentially to its pre-earthquake condition without replacement of reinforcement or structural members. Repair should not require closure. Permanent offsets should be avoided.	$0.5 > \frac{C}{D} \ge 0.33$
Significant damage	Permanent offsets may occur Damage consisting of cracking, reinforcement yielding, and major spalling of concrete Require closure to repair Partial or complete replacement may be required in some cases.	$\frac{C}{D} < 0.33$

EARTHQUAKE FRAGILITY CURVES

Damage state	PGA								
	0.07	0.08	0.1	0.11	0.13	0.14	0.15	0.16	0.17
No Damage	0.208	0.375	0.458	0.708	0.750	0.792	0.875	0.958	1.000

CONSEQUENCE ASSESSMENT

CAUSE AND EFFECT ANALYSIS

DIRECT TANGIBLE IMPACT

Possible damage to components

Approach

Abutment

Pier

Deck

Girder

DIRECT TANGIBLE IMPACT DUE TO FLOOD

Quarterly submerged, Half submerged, Fully submerged as to the height of the deck.

Velocity

Four level of the velocity of the water: 0-2m/s, 2-4m/s, 4-5m/s, over 5m/s

DIRECT TANGIBLE IMPACT

Damage Scenarios

Hazard Scenario Depth of Flood •Quarterly submerged •Half submerged •Fully submerged

Flow velocity •0-2 m/s •2-4 m/s •4-5 m/ •>5 m/s ^{Cited from HAL 2005} Deck

- Pile
- Pier
- Girder
- Foundation
- Bearing
- Upstream of the bridge (utilities)

Vulnerable Component

Abutment

Approach

Possible Damages

- Lateral or vertical movement of the structure component
- the spall of the concrete surface
- Padding or soil washed away or eroded by torrent
- Build-up of debris on the upstream side of bridge

Inspection report 2014

KAPERNICKS BRIDGE CASE STUDY

ROAD CONDITIONS AND NETWORK

Road connected with the damaged bridge

The mostly used city highway

Poor condition of alternative road

Reasonable alternative road

INDIRECT COST ESTIMATION

According to the probabilistic vehicle operating cost model, the vehicle operating cost is from 20 cents/km to 34.5 cents/km, and median operating cost is around 27 cents/km. The median for the heavy vehicle is 50 cents/km In this case study the average additional travelling distance is around 3.5 km

The number of light vehicle is729*0.745=544The number of heavy vehicles is729*0.255=186The extra cost for light vehicles estimated at544*3.5*0.27= \$514 per dayThe extra cost for heavy vehicles estimated at

```
186*3.5*0.5= $325 per day.
```

The opportunity loss is mainly the value of the time. The widely used method is to use the average salary to measure the extra travelling time. According to the simulation of the Google map, the median extra time on travel is 8 minutes=0.133h, the average travelers in a vehicle is 1.3. The average salary in the QLD is 20\$/h. The opportunity loss of the road users is approximately: 20* 0.133*749*1.3 = \$2500 per day

DECISION TREE APPROACH

PARTITIONED MULTIOBJECTIVE RISK METHOD (PMRM)

EXTENDED DECISION TREE TO COVER OPTIONS

PLANNED FUTURE ACTIVITIES

- Analysis of design standards and applied loads on road structures under extreme events
- Source further case studies of bridges, varying input data, categorise structures based on obtained vulnerability curves, distribution and reliability
- Gather additional data for deriving damage indices based on cost of recovery
- Further expansion and implementation of the decision support method

UTILISATION-SHORT TERM

- Vulnerability indices developed in the project are used by road authorities and local government to assess resilience of bridges in the case study regions
- Draft design guide for floodways is used by road authorities

TASKS FOR THE RESEARCHERS

- Convert outcomes to user friendly tools GIS integration
- Provide training for the road authorities and local government

TANK YOU

QUESTIONS / COMMENTS