IMPROVING FLOOD FORECAST SKILL USING REMOTE SENSING DATA

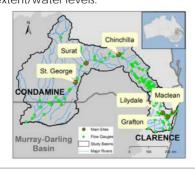
V. Pauwels¹, J. Walker¹, Y. Li¹, A. Wright¹, S. Grimaldi¹ ¹Monash University, Department of Civil Engineering, Clayton, VIC 3800

THE USE OF REMOTE SENSING DATA IN OPERATIONAL FLOOD FORECASTING IS CURRENTLY RECEIVING INCREASING ATTENTION. THIS PROJECT INVESTIGATES THE USE OF REMOTELY SENSED SOIL MOISTURE AND FLOOD EXTENT/LEVEL TO IMPROVE HYDROLOGIC AND HYDRAULIC MODELLING, RESPECTIVELY. A SYSTEMATIC APPROACH WILL BE DEVELOPED TO OPTIMALLY USE THESE DATA FOR OPERATIONAL FLOOD FORECASTING.

Floods are among the most common natural disasters in Australia, and cost the economy on average \$377M per year. 1859 people have died in floods between 1900 and 2015 (*Haynes et al.*, 2016¹). In early June 2016, floods in East Australia and Tasmania claimed the lives of 5 people.

Flood forecasting models are an essential tool in managing floods. They consist of a hydrologic model, forecasting the flow volume in the river system, and a hydraulic model, converting this flow volume into water levels and flood extents.

>Forecast inaccuracies are mainly due to errors and uncertainties in the rainfall data and the model structure and parameters.

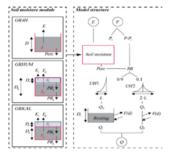

>Satellite remote sensing (RS) can provide excellent data sets that should be used to constrain these models.

>In this project, RS soil moisture values will be used to constrain the hydrologic model; RS water levels and flood extents will be used to constrain the hydraulic model.

STUDY SITES

The Clarence and the Condamine-Culgoa-Balonne (Fig. below) have been selected based on:

 > the relevance of historical flood events;
> the availability of RS data of flood extent/water levels.

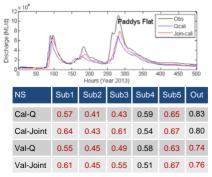

HYDROLOGIC MODELLING (GR MODELS)

Model comparison

The following three variants of GR (Génie Rural) models were initially investigated:

GR4H with a bulk soil moisture (SM) layer;
GRHUM with a bulk SM layer and a surface layer embedded;

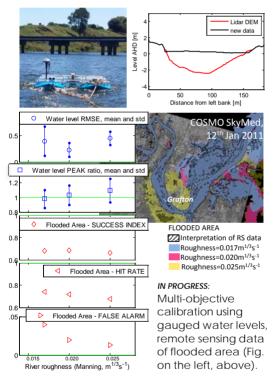
➤GRKAL with separated surface and rootzone SM layers.



Due to the relatively good performance and ability to accept RS data, the GRKAL model has been chosen.

Joint calibration

A semi-distributed forecasting system based on GRKAL and linear Muskingum routing is calibrated using either only discharge or both discharge and RS-SM in Clarence. The results indicate that:


 > RS-SM can improve flow prediction in forecasting period (Fig. below);
> RS-SM has stronger impact in ungauged areas (Table below).

HYDRAULIC MODELLING (LISFLOOD – FP)

Clarence catchment

A field campaign was organized to complete the existing bathymetric dataset (20km).

Condamine-Balonne catchment

A field campaign was organized to measure the bathymetry of river reaches in strategic locations (13km in total).

IN PROGRESS

Analysis of critical features: >Low accuracy of the DEM >Lack of bathymetric data >Levee breaches (yellow arrow in the Fig. on the right)

REFERENCE: ¹ Haynes, K., Coates, L., Dimer de Oliveira, F., Gissing, A., Bird, D., van den Honert, R., Radford, D., D'Arcy, R. Smith, C. (2016). An analysis of human fatalitiles from floods in Australia 1900-2015. Report for the Bushfire and Natural Hazards CRC

Business Cooperative Research Centres Programme MONASH University

Bureau of Meteorology

Geoscience Australia

bnhcrc.com.au