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WHAT IS ENSEMBLE PREDICTION?
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FORECAST MODELS ARE LIKE FOOTBALL 

TEAMS

Good

Useful

Very good

Sk
ill
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EAST COAST LOW

1) 20 – 23 April 2015

2) Intense low pressure systems 

that form close to NSW coast

3) Strong winds, heavy rain, 

major flooding, major waves 

and coastal erosion

4) 4 deaths

5) Dozens of roofs lost, trees 

down, > 200000 houses 

without power, 57 schools 

closed
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TWO MEMBERS OF ENSEMBLE
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TWO MEMBERS OF ENSEMBLE



48-HOUR RAINFALL TOTALS



WHY USE ENSEMBLE 

PREDICTION?

Probabilistic prediction

Greater accuracy

Data assimilation

Observation targeting

Preemptive forecasts

Develop understanding

Once you have an ensemble, many of these are relatively 

cheap to compute.



PROBABILISTIC PREDICTION

Risk management

Seamless prediction

Handle inherent uncertainty
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RISK MANAGEMENT
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CARDWELL – TC YASI STORM SURGE
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TC YASI – 200 ENSEMBLE MEMBERS
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HIGH-RESOLUTION SIMULATION OF A 

BUSHFIRE PLUME
y = 0.0 m z = 242.7 m

z = 1176.8 m z = 2495.7 m

Courtesy Will Thurston 
(see his talk at 2 pm)
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FIREBRAND TRANSPORT

Courtesy Will Thurston 
(see his talk at 2 pm)
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RAINFALL PROBABILITIES

Probabilities of 48-hour total rainfall exceeding 100 mm and 400 mm



SEAMLESS PREDICTION

Ensemble predictions systems are more consistent
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THE ENSEMBLE MEAN IS MORE CONSISTENT
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Forecast Lead Time (hrs)

Consistent

Jumpy

Deterministic

Ensemble mean

Zsoter et al. (2009 QJRMS)
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SEAMLESS PREDICTION

Climatology

2 days ahead

1 week ahead

Observed

2 weeks ahead
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EAST COAST LOW PROBABILITIES

Probability of 24 hr rainfall > 25 mm T + 7.5 days
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EAST COAST LOW PROBABILITIES
Probability of 24 hr rainfall > 25 mm T + 6.5 days
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EAST COAST LOW PROBABILITIES
Probability of 24 hr rainfall > 25 mm T + 5.5 days
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EAST COAST LOW PROBABILITIES
Probability of 24 hr rainfall > 25 mm T + 4.5 days
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EAST COAST LOW PROBABILITIES
Probability of 24 hr rainfall > 25 mm T + 3.5 days
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EAST COAST LOW PROBABILITIES
Probability of 24 hr rainfall > 25 mm T + 2.5 days
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EAST COAST LOW PROBABILITIES
Probability of 24 hr rainfall > 25 mm T + 1.5 days



GREATER ACCURACY
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48-HR RAINFALL ENSEMBLE MEAN
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PROBABILITY-MATCHED ENSEMBLE MEAN



DATA ASSIMILATION

Ensemble DA

Fire model DA
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THE NUMERICAL WEATHER PREDICTION 

CYCLE

Analysis 6-hr forecast

Long forecast

6-hr forecast Assimilate

Observations

Model

Forecasters

Analysis
Weighted mean of observations 

and forecast
Weights depend on the relative accuracy 

of the observation and forecast
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20C REANALYSIS EXAMPLE
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BLACK FRIDAY 1939
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BLACK FRIDAY 1939
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BLACK FRIDAY 1939
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BLACK FRIDAY 1939
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BLACK FRIDAY 1939
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BLACK FRIDAY 1939
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BLACK FRIDAY 1939
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BLACK FRIDAY 1939
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BLACK FRIDAY 1939
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BLACK FRIDAY 1939



© BUSHFIRE AND NATURAL HAZARDS CRC 2016

BLACK FRIDAY 1939
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ASSIMILATION IN A TOY FIRE MODEL

1) Model state is a grid of 

cells, each cell is either 

burning or not

2) Ensemble generated as 

a random set of ellipses 

of fire perimeter
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ASSIMILATION IN A TOY FIRE MODEL

1) Top is the probability that 

a cell is burning before 

data assimilation

2) Obs: white dot is burning

3) Bottom is the probability 

that a cell is burning 

after data assimilation
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MOVE THE OBSERVATION



OBSERVATION TARGETING
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TARGETING HURRICANE IRENE

Majumdar et al., WMO TD No 15, 2011



PRE-EMPTIVE FORECASTS

What happens after we've run the ensemble?

Image: Brian Ancell
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PRE-EMPTIVE FORECASTS
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ENSEMBLE SUBSET TECHNIQUE FOR 

TROPICAL CYCLONE TRACK

Dong and Zhang Weather and Forecasting 2016
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ENSEMBLE SUBSET TECHNIQUE FOR 

TROPICAL CYCLONE TRACK

Dong and Zhang Weather and Forecasting 2016
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SUMMARY

Ensemble predictions 

• Are more accurate

• Are more consistent

• Objective probabilistic prediction

• Support risk management

• Improve data assimilation

• Help target observations

• Pre-emptive forecasts


