

Bureau of Meteorology

WHY USE ENSEMBLE PREDICTION?

Jeffrey D. Kepert High Impact Weather Research Bureau of Meteorology

Department of Industry, Innovation and Science

Australian Government

Business Cooperative Research Centres Programme

WHAT IS ENSEMBLE PREDICTION?

© BUSHFIRE AND NATURAL HAZARDS CRC 2016

bnhcrc.com.au

Australian Government Bureau of Meteorology

FORECAST MODELS ARE LIKE FOOTBALL TEAMS

EAST COAST LOW

- 1) 20 23 April 2015
- 2) Intense low pressure systems that form close to NSW coast
- 3) Strong winds, heavy rain, major flooding, major waves and coastal erosion
- 4) 4 deaths
- 5) Dozens of roofs lost, trees down, > 200000 houses without power, 57 schools closed

Bureau of Meteorology

TWO MEMBERS OF ENSEMBLE

Bureau of Meteorology

TWO MEMBERS OF ENSEMBLE

Probabilistic prediction Greater accuracy Data assimilation Observation targeting Preemptive forecasts Develop understanding

Once you have an ensemble, many of these are relatively cheap to compute.

WHY USE ENSEMBLE PREDICTION?

Bureau of Meteorology

Risk management Seamless prediction Handle inherent uncertainty

PROBABILISTIC PREDICTION

Bureau of Meteorology

RISK MANAGEMENT

		Impact							
		Negligible	Minor	Moderate	Significant	Severe			
Likelihood	Very Likely	Low Med	Medium	Med Hi	High	High			
	Likely	Low	Low Med	Medium	Med Hi	High			
	Possible	Low	Low Med	Medium	Med Hi	Med Hi			
	Unlikely	Low	Low Med	Low Med	Medium	Med Hi			
	Very Unlikely	Low	Low	Low Med	Medium	Medium			

CARDWELL – TC YASI STORM SURGE

TC YASI – 200 ENSEMBLE MEMBERS

Bureau of Meteorology

Courtesy Will Thurston (see his talk at 2 pm)

© BUSHFIRE AND NATURAL HAZARDS CRC 2016

bnhcrc.com.au

25

15 10

5

3

1

-2

-4

-20

Bureau of Meteorology

FIREBRAND TRANSPORT

RAINFALL PROBABILITIES

Probabilities of 48-hour total rainfall exceeding 100 mm and 400 mm

Bureau of Meteorology

Ensemble predictions systems are more consistent

SEAMLESS PREDICTION

imen

THE ENSEMBLE MEAN IS MORE CONSISTENT

Zsoter et al. (2009 QJRMS)

SEAMLESS PREDICTION

bnhcrc.com.au

Australian Government

Bureau of Meteorology

Probability of 24 hr rainfall > 25 mm

T + 7.5 days

Plot produced at UTC Fri Aug 26 02:43:11 2016 from AGREPS-G by EnembleProbability.py

Probability of 24 hr rainfall > 25 mm

T + 6.5 days

Plot produced at UTC Fri Aug 26 01:22:00 2016 from AGREPS-G by EnembleProbability.py

Probability of 24 hr rainfall > 25 mm

T + 5.5 days

Plot produced at UTC Fri Aug 26 01:08:00 2016 from AGREPS-G by EnembleProbability.py

Probability of 24 hr rainfall > 25 mm

T + 4.5 days

Plot produced at UTC Fri Aug 26 00:48:00 2016 from AGREPS-G by EnembleProbability.py

Probability 1.0 Dones a 10"5 0.9 0.8 \sim 0.7 20"5 ۰. 0.6 0.5 30"5 0.4 0.3 40"5 0.2 0.1 50°S 0.0 100"E 110°E 120°E 130°E 140°E 150°E 160"E 170°E

Probability of 24 hr rainfall > 25 mm

T + 3.5 days

Plot produced at UTC Thu Aug 25 06:42:30 2016 from AGREPS-G by EnembleProbability.py

Probability of 24 hr rainfall > 25 mm

T + 2.5 days

Plot produced at UTC Thu Aug 25 07:13:88 2016 from AGREPS-G by EnembleProbability.py

Probability of 24 hr rainfall > 25 mm

T + 1.5 days

Plot produced at UTC Thu Aug 25 07:32:50 2016 from AGREPS-G by EnembleProbability.py

Bureau of Meteorology

GREATER ACCURACY

48-HR RAINFALL ENSEMBLE MEAN

Australian rainfall analysis (mm) 21st to 22nd April 2015 Australian Bureau of Meteorology

PROBABILITY-MATCHED ENSEMBLE MEAN

Australian Government

Bureau of Meteorology

© BUSHFIRE AND NATURAL HAZARDS CRC 2016

Bureau of Meteorology

Ensemble DA Fire model DA

DATA ASSIMILATION

20C REANALYSIS EXAMPLE

Bureau of Meteorology

BLACK FRIDAY 1939

BLACK FRIDAY 1939

BLACK FRIDAY 1939

ustrumun Gövermitent

Bureau of Meteorology

BLACK FRIDAY 1939

BLACK FRIDAY 1939

Austranan Göver innent

Bureau of Meteorology

BLACK FRIDAY 1939

Austranan Göver innent

Bureau of Meteorology

BLACK FRIDAY 1939

BLACK FRIDAY 1939

BLACK FRIDAY 1939

Bureau of Meteorology

BLACK FRIDAY 1939

ASSIMILATION IN A TOY FIRE MODEL

- 1) Model state is a grid of cells, each cell is either burning or not
- 2) Ensemble generated as a random set of ellipses of fire perimeter

- 1) Top is the probability that a cell is burning before data assimilation
- 2) Obs: white dot is burning
- 3) Bottom is the probability that a cell is burning after data assimilation

Bureau of Meteorology

MOVE THE OBSERVATION

OBSERVATION TARGETING

TARGETING HURRICANE IRENE

Majumdar et al., WMO TD No 15, 2011

Rustrumun Governmen

Bureau of Meteorology

What happens after we've run the ensemble?

PRE-EMPTIVE FORECASTS

Image: Brian Ancell

Bureau of Meteorology

PRE-EMPTIVE FORECASTS

Australian Government

ENSEMBLE SUBSET TECHNIQUE FOR TROPICAL CYCLONE TRACK

Dong and Zhang Weather and Forecasting 2016

ENSEMBLE SUBSET TECHNIQUE FOR TROPICAL CYCLONE TRACK

Dong and Zhang Weather and Forecasting 2016

SUMMARY

Ensemble predictions

- Are more accurate
- Are more consistent
- Objective probabilistic prediction
- Support risk management
- Improve data assimilation
- Help target observations
- Pre-emptive forecasts

		Impact						
		Negligible	Minor	Moderate	Significant	Severe		
Likelihood	Very Likely	Low Med	Medium	Med Hi	High	High		
	Likely		Low Med	Medium	Med Hi	High		
	Possible		Low Med	Medium	Med Hi	Med Hi		
	Unlikely		Low Med	Low Med	Medium	Med Hi		
	Very Unlikely			Low Med	Medium	Medium		

