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1. ABSTRACT 

The fuel availability estimates in McArthur Forest Fire Danger Index used in Australia 

for issuing operational fire warnings is based on soil moisture deficit, calculated as 

either the Keetch–Byram Drought Index (KBDI) or Mount’s Soil Dryness Index 

(MSDI). These indices are essentially simplified, empirical water balance models 

designed to estimate soil moisture depletion in the upper soil levels. These two models 

over-simplify processes like evapotranspiration and runoff which can lead to large 

uncertainties in the predicted soil moisture deficit. With advancements in the science of 

soil moisture measurement and modelling, better products are available for use in fire 

danger ratings. As such, a detailed review of the established and emerging soil moisture 

estimation techniques becomes necessary. With this in view, efforts have been made in 

this paper to discuss various soil moisture estimation methods, their advantages and 

limitations in a fire danger rating context. The discussion is not intended to be complete 

and reflect the authors’ interests, but we hope that it helps to highlight the soil moisture 

data sources that may not be well known outside the hydrological community, 

especially the people in fire management. 

2. INTRODUCTION 

Fire danger rating systems are devised to evaluate and integrate the individual and 

combined factors influencing fire danger. Most of the fire danger rating systems 

(FDRS) employed in different countries across the world are based on meteorological 

variables and fuel conditions and give information on the probability of forest fire 

ignition, propagation and spread. The ignition, spread as well as the short temporal 

variations in fire danger depend on fuel availability, fuel moisture content (FMC) and 

prevalent weather conditions (Chandler et al., 1983). FMC is defined as the mass of 

water contained within the fuel, expressed as percentage of oven-dry mass of that fuel. 

FMC is a critical variable affecting fire interactions with fuel and partly controls the 

efficiency of fire ignition and burning. For example, Dowdy and Mills (2012) showed 

that FMC influences the risk of ignition from lightning in south-east Australia. Fuel 

availability is the proportion of fuel which will burn in a fire (Luke and McArthur, 

1978). Because fuel moisture and fuel availability measures are not always readily 

available, fire danger rating systems include sub-models to estimate these quantities 

from weather observations. The McArthur Forest Fire Danger Index (FFDI; McArthur, 

1967) used in Australia for instance, has a component representing fuel availability 

called the Drought Factor, which in turn is partly based on soil moisture deficit 
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commonly calculated as either the Keetch–Byram Drought Index (KBDI; Keetch and 

Byram, 1968) or Mount’s Soil Dryness Index (SDI; Mount, 1972).  

The soil moisture deficit therefore becomes a key variable in the FFDI calculations 

done operationally by Bureau of Meteorology in Australia. Accurate estimates and 

forecasts of soil moisture are therefore crucial to do effective fire danger calculations 

for wildfire management, rating and warning. Further, it is shown that (Gellie, 2010) the 

occurrence of large destructive fires corresponds to very large soil moisture deficit 

values in Australian landscapes, thereby potentially increasing the availability and 

resulting flammability of the forest fuel structures.  

With recent progresses in the science of soil moisture, new products are available which 

could potentially provide significantly improved accuracy of the soil moisture fields 

needed for fire danger rating. Also, there are a variety of soil moisture estimation 

methods used across the world for the application in fire danger rating. This report 

describes some of the important sources of soil moisture that are established or are 

emerging, and which can be potentially used in the Australian fire danger rating system. 

This study intends to be of a preliminary nature to the research that will be carried out 

to deliver better soil dryness products with greater accuracy at a much higher spatial and 

temporal resolution for use in operational fire danger rating. 

3. ESTIMATING SOIL MOISTURE DEFICIT USING INDICES 
BASED ON METEOROLOGICAL PARAMETERS 

Fuel moisture content is usually divided into dead (DFMC) and live (LFMC) 

components. LFMC is much more difficult to estimate than DFMC, because it is 

governed by the complex processes of root water uptake and transpiration that are 

controlled by multiple physical and biological factors. An accurate estimation of LFMC 

can be physically measured by the oven-drying of plants (Allen, 1989). This method is 

simple and reliable but very slow and labour intensive. A regional LFMC assessment is 

not feasible using this method. Therefore, it is desirable to have models that could 

reasonably predict the LFMC from more easily accessible parameters. The soil moisture 

state is a key factor in assessing the dryness of live vegetation due to the correlation that 

exists between the two variables (Burgan, 1988; Viegas et al., 1992). Given the 

dependence of FMC on soil moisture, it is convenient to develop mathematical 

relationships between the two. The KBDI is such a model which measure cumulative 

soil water deficit in forested ecosystems and is used in Australia as part of the 

operational fire danger ratings. Studies show that KBDI exhibits a strong relationship 
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with  LFMC (Dimitrakopoulos and Bemmerzouk, 2003). There are a variety of indices 

in use across the world which uses soil moisture as a proxy and can be related to LFMC. 

For example, Viegas et al. (2001) and Castro et al. (2003) found that a non-linear 

relationships can be derived between moisture codes in the Canadian Forest Fire 

Weather Index (FWI) system and LFMC data for Mediterranean vegetation. The SDI, 

which too is a measure of soil moisture deficit, is another method which relates 

vegetation water stress to soil moisture content and is also used in Australia for fire 

danger ratings. The following sections give a detailed description of the two methods 

(KBDI and SDI) used currently in Australia and also provides a short description on 

other methods used worldwide. 

3.1 Keetch–Byram Drought Index (KBDI) 

The KBDI is conceptually a cumulative estimate of soil moisture deficit calculated 

using an empirical assumption to soil moisture depletion in the upper soil levels (Janis, 

2002). The index was developed to function throughout a wide range of climatic and 

rainfall conditions in forested or wild land areas. The KBDI is widely used in the 

Australian states of Victoria, New South Wales and Queensland operationally for fire 

danger ratings (Finkele et al., 2006). A sample plot of KBDI generated for the whole of 

Australia on 22nd of September 2014 using the Australian Water Availability Project 

(AWAP) rainfall and daily maximum temperature data at 0.05o x 0.05o resolution is 

shown in Fig. 1. The underlying assumptions of KBDI are (i) rate of moisture loss due 

to evapotranspiration is a function of vegetation cover density, which itself is an 

exponential function of mean annual rainfall (ii) the evapotranspiration rate is also 

assumed to be an exponential function of the daily maximum temperature, and (iii) the 

depth of the soil layer is such that the maximum water available for evapotranspiration 

is 203.2 mm (8 inches). The daily KBDI filed is estimated as: 

௧ܫܦܤܭ ൌ ௧ିଵܫܦܤܭ െ ேܲ௧   (1)    ܶܧ

where KBDI is the Keetch–Byram drought index value at that location, subscripts t and 

t-1 depicts current day and previous day respectively, PNet is the net accumulated 

rainfall valid at 9 am (local time) of the current day and ET is the daily 

evapotranspiration.  

The net rainfall is calculated by subtracting the interception/runoff value from the 

accumulated rainfall amount, if the 24-hour accumulated rainfall amount or the 

accumulated rainfall amount over consecutive rainy days exceeds 5.08 mm. A 

consecutive rainfall period ends on the first day where there is no measurable rain (Rain 
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= 0). Thus, accounting for the net accumulated rainfall enables KBDI to satisfy the 

concept of consecutive and continuous water deficiency for drought indices (Byun and 

Wilhite, 1999). 

The ET term in equation (1) is given by: 

ܶܧ ൌ 	
ሺଶଷ.ଶିூషభሻሺ.ଽ଼బ.బఴళఱಾೌೣశభ.ఱఱఱమି଼.ଷሻ

ଵାଵ.଼଼షబ.బబభళయೃೌೠೌ
  (2) 

where T
Max

 is the previous day’s maximum temperature and R
annual

 is the mean annual 

rainfall. 

 

Fig. 1 KBDI for 22nd September 2014 generated at 0.05o resolution using the gridded AWAP rainfall and 
temperature data. 

3.2 Mount’s Soil Dryness Index (SDI) 

SDI is the second type of soil water balance model used in Australia for drought factor 

calculations (Fig. 2). It was developed by Mount (1972) for Tasmanian Fire Service and 

are widely used in the states of Tasmania and South Australia. SDI is also used in the 

state of Western Australia to estimate the conditions for prescribed burning. Like KBDI, 

SDI also defines the soil moisture deficit, but the interception and runoff are treated 

separately in this case. SDI is expressed as: 



SOURCES OF SOIL DRYNESS MEASURES AND FORECASTS FOR FIRE DNAGER RATING 

 

 

5 
 

௧ܫܦܵ ൌ ௧ିଵܫܦܵ െ ேܲ௧   (3)     ܶܧ

where subscripts t and t-1 depicts current day and previous day respectively, PNet is the 

net accumulated rainfall valid at 9 am of current day and ET is daily evapotranspiration. 

ேܲ௧ ൌ ܴܽ݅݊ െ ݊݅ݐ݁ܿݎ݁ݐ݊ܫ െ  (4)   ݂݂݊ݑܴ

The interception and runoff formulated in SDI is based on seven vegetation categories 

defined at each point of calculation. The vegetation class O represents lakes, rock and 

bare soil. The vegetation classes A-F depend on the vegetation type (eucalypt or pine), 

understorey density and tree canopy. For each category, Mount (1972) has defined 

values (Table 1) for canopy rainfall interception fraction (R), canopy storage capacity 

(C), canopy loss per wet day (W), and flash-runoff fraction (FR).  

Table 1 Vegetation classes and corresponding parameter values from Mount (1972). 

Vegetation Class O A B C D E F 

Canopy rainfall interception fraction (R) 0 0.1 0.2 0.3 0.4 0.5 0.6 

Canopy storage capacity (C) 0 0.5 1.0 2.0 2.5 3.5 4.0 

Canopy loss per wet day (W) 0 0.5 0.5 0.5 0.5 0.5 1.0 

Flash runoff fraction (FR) 1/10 1/20 1/30 1/40 1/50 1/60 1/70

Interception is given by: 

݊݅ݐ݁ܿݎ݁ݐ݊ܫ ൌ ൜	
ܴ ∗ ܴܽ݅݊,											ܴ ∗ ܴܽ݅݊ െ ܥ ௧ܹିଵ  ܥ
ܥ െ ܥ ௧ܹିଵ,							ܴ ∗ ܴܽ݅݊  ܥ ௧ܹିଵ   (5)  ܥ

where R, and C are in Table 1. 

The interception loss depends on the previous day’s canopy water storage (CWt-1), 

canopy storage capacity, and canopy rainfall interception fraction. The canopy water 

storage is determined by the balance between canopy rainfall interception and wet 

canopy evaporation loss on consecutive wet days (W, from Table 1). The canopy is 

assumed to dry out completely in a single dry day which follow the consecutive wet 

days. 

ܥ ௧ܹ ൌ ൜
ܥ ௧ܹିଵ  ݊݅ݐ݁ܿݎ݁ݐ݊ܫ െܹ, ݂݅	ܴܽ݅݊  0
0,																																																		݂݅	ܴܽ݅݊ ൌ 0   (6) 

Flash runoff is defined as a fraction of rainfall, and the fraction depends on the 

vegetation category defined by Mount (Table 1). i.e., 
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݂݂݊ݑܴ ൌ ܴܨ ൈ ܴܽ݅݊     (7) 

The ET in SDI assumes as a linear relationship with daily maximum temperature and is 

given by: 

ܶܧ ൌ ܽ ெܶ௫  ܾ      (8) 

The regression coefficients ai and bi are derived from the relationship between mean 

monthly pan evaporation and mean monthly daily maximum temperature data available 

from the Bureau of Meteorology’s Australian Integrated Forecaster Workstation (AIFS) 

for state capital cities.   

 

Fig. 2 Same as Fig. 1, but for SDI. 

Comparisons between the KBDI and SDI made by Finkele et al. (2006) showed that the 

main difference between the two schemes is in the representation of evapotranspiration 

rather than the infiltration/runoff process. It was observed that SDI tend to give higher 

soil moisture deficits in almost all locations of Australia. This is especially noticeable in 

the warmer inland locations with sparse vegetation cover. The evapotranspiration in 

SDI is a linear function of maximum temperature and consequently follows the 

maximum temperature patterns, which is higher for inlands. Hence, Finkele et al. 

(2006) concluded that the use of SDI may not be appropriate at warm inland locations 
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of Australia. They argued that SDI is however suitable in predicting soil moisture 

deficits at cooler climatic zones, like the south eastern parts of Australia; where 

differences between SDI and KBDI are minimum as shown by both temporal averages 

and means over different drought factor classes. 

3.3 Other indices in use internationally 

Most of the FDRS used in different countries take the relationship between live 

vegetation moisture content and soil moisture into account by employing methods 

which directly or indirectly relate the fire danger index with soil moisture content. For 

example, the National Fire Danger Rating System (NFDRS) employed in the United 

States uses KBDI to estimate the proportion of live and dead fuels during prolonged 

drought periods (Burgan, 1988).  

The Canadian Fire Weather Index (FWI) system (van Wagner, 1987; Dowdy et al., 

2010) includes three moisture codes that estimate the relative moisture content of three 

fuel layers and are calculated based on past and present weather observations of rainfall, 

relative humidity, temperature, and wind speed. The Fine Fuel Moisture Code (FFMC) 

represents the top 1–2 cm of the forest floor and numerically rates moisture content of 

litter and other cured fine fuels such as mosses, needles, and twigs. The Duff Moisture 

Code (DMC) represents the moisture content of loosely-compacted organic layers of 

moderate depth (5 – 10 cm). The fuels at this depth are assumed to be affected only by 

rain, temperature and relative humidity and not wind speed. It is also assumed that only 

a 24-hour accumulated rainfall amount of 1.5 mm or more has an effect on the DMC 

and anything below this value is intercepted by the forest canopy and fine fuel layer. 

The DMC fuels have a slower drying rate than the FFMC fuels and hence a seasonal 

day-length factor has been incorporated to account for the length of daily drying time 

into the drying phase of the DMC. The third and final moisture code is called the 

Drought Code (DC) and it is an indicator of moisture content in deep compact organic 

layers situated at approximately 10 – 20 cm) deep. It is assumed that only temperature 

and rainfall affect DC, and not the wind speed and relative humidity because of the deep 

location of the fuel layer. The moisture content of this layer is affected only when the 

24-hour rainfall exceeds 2.8 mm, and lesser rainfalls are assumed to be lost due to 

interception by upper fuel layers and the forest canopy. The DC fuels also have a very 

slow drying rate, with a time-lag of 52 days, which is addressed by incorporating a 

seasonal day length factor in the drying phase. The FWI is the most widely used FDRS 

in the world and has been adapted by many countries including New Zealand, Mexico, 
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Indonesia, and Malaysia, Fiji, parts of the United States, Argentina, Span and Portugal ( 

Field et al., 2014). 

There are also many meteorologically based indices used in various European countries 

like France, Italy, Finland, and Sweden which relate soil moisture deficit to fire danger. 

All these models, like KBDI or SDI, are rather simplistic models which are empirically 

derived and calibrated for respective regions. The Finnish forest fire index 

(Heikinheimo et al., 1998) describes essentially the moisture content of a soil surface 

layer, by estimating the volumetric soil moisture of a 60 mm thick layer using actual 

evaporation and precipitation data. The change in moisture state of the surface layer is 

essentially defined as a balance between precipitation amount after runoff and actual 

evaporation. The amount of rainfall runoff depends on the intensity of precipitation, 

with a higher intensity implying larger runoff. Actual evaporation is defined as a 

function of potential evapotranspiration and drying efficiency, which is empirically 

related to the initial or previous volumetric moisture of the surface layer. The input data 

for the calculation of the index comes from routine weather observations. 

The French fire danger index (Willis et al., 2001) combines the effects of a ‘drought 

index’ with wind speed as a measure of fire danger. The drought index is a measure of 

fuel dryness, calculated by estimating the change in soil moisture capacity which in turn 

depends on the daily potential evapotranspiration. Potential evapotranspiration is 

calculated using a formula that includes daily rainfall, temperature and relative 

humidity. The drought index thus provides a measure of ignition probability in addition 

to fuel availability. By combining drought index with wind speed, the French fire 

danger index accounts for the potential rate of fire spread. 

The Italian Method (Dimitrakopoulos et al., 2011) estimates the loss of soil moisture 

due to actual evapotranspiration and compares it with the potential evapotranspiration in 

order to compute the fire danger index. The method make use of daily average values of 

air temperature, relative humidity, wind speed, insolation, and cumulative precipitation. 

The Swedish Meteorological and Hydrological Institute (SMHI) calculates the soil 

moisture values for the estimation of forest fire danger (Gardelin, 1996) using the 

Hydrologiska Byråns Vattenavdelning (HBV) model (Bergström, 1976; Lindström et 

al., 1997). The HBV model relates forest fire danger to the calculated soil moisture 

content of an upper soil layer which has an assumed storage capacity of about 25 mm. 

The HBV model is basically a rainfall-runoff model, which includes conceptual 

numerical descriptions of hydrological processes at the catchment scale. The model is 
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normally run on daily values of rainfall and air temperature, and daily or monthly 

estimates of potential evaporation. If no evapotranspiration data is present, the values 

can be calculated directly from temperature data. The major land-use classes in the 

model are open areas, forests, lakes and glaciers. The soil moisture accounting of the 

HBV model is based on a modification of the bucket theory and assumes a statistical 

distribution of storage capacities in a basin. 

4. IN SITU SOIL MOISTURE OBSERVATIONS 

In situ soil moisture measurement techniques enable the collection of data with high 

precision, provided that the instruments are well calibrated. The probing depth of these 

ground based instruments are higher (usually 1 to 2 m to represent the vegetation root 

zone) compared to the remote sensing based ones (a few centimetres) which could be 

more valuable in a hydrologist’s perspective. A number of techniques are available for 

ground based soil moisture measurements which are either classified as direct or 

indirect methods; based on whether the technique requires a contact with soil for 

measurements (Robinson et al., 2008). Some examples of direct method include 

gravimetric methods (Robock et al., 2000) time domain reflectometry (Robinson et al., 

2003), neutron probes (Vachaud et al., 1977), capacitance sensors (Bogena et al., 2007), 

cosmic-ray neutrons method (Desilets et al., 2010), electrical resistivity measurements 

(Samouelian et al., 2005), heat pulse sensors (Valente et al., 2006), and fibre optic 

sensors (Robinson et al., 2008). The indirect measurements include ground penetrating 

radar (Lambot et al., 2006) and electromagnetic induction (Corwin and Lesch, 2005), 

and ground-based gravity method (Smith, 2014). A comprehensive review on each of 

these measurement techniques is given by Robinson et al. (2008), and Vreecken et al. 

(2008). 

The accuracy of generally used and cost effective in situ soil moisture sensors like the 

electromagnetic sensors is affected by some inherent issues associated with calibration 

functions and site characteristics (Mittlebach et al., 2012). Time domain reflectometry 

(TDR) sensors can measure the data at a higher quality than the electromagnetic 

sensors, but are often associated with higher costs. Further, TDR sensors have higher 

power consumption which could limit their use for continuous automated monitoring 

for a prolonged periods on specific sites that has to be operated with a stand-alone 

power supply. 

However, the main limitation of ground based soil moisture observation techniques is 

that the effective area represented by these measurements are rather limited and are 
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about three to six orders of magnitude less than that provided by remote sensing 

platforms (Western et al., 2002). Since soil moisture exhibits high spatial variability, 

this will lead to large errors of representativity (Famiglietti et al., 2008); and  in order to 

map extended spatial scales (example, continental scale), a large array of sensors are 

required. This could be very expensive to operate and maintain, which explains why 

there are very few such networks available. Despite its limited application for studying 

spatial variability of soil moisture, the point observations are still very useful, due to its 

high accuracy (provided that sites and calibration functions are properly chosen), for 

remote sensing and land surface and hydrological model data calibration/validation 

(Chen et al., 2013; Paulik et al., 2014).  

Recently, an effort is put in place to create a data base of long-term in situ soil moisture 

measurements taken from either operational networks or validation campaigns around 

the globe. This collaboration called “The International Soil Moisture Network” (ISMN;  

Dorigo et al., 2011) collects, harmonize and store the observations in a centralized data 

bank. The aim of ISMN is to make available an accessible global dataset for validating 

and improving global satellite observations and land surface models using observations 

taken at sites across the world which are unique in terms of climate, topography, land-

use type and soil characteristics. This data set includes observations from the OzNet 

hydrological monitoring network managed together by Monash University and The 

University of Melbourne, Australia. 

 

Fig. 3 Site locations of (a) OzNet and (b) CosmOz network. Spatial extent of (a) corresponds to the 
shaded area in its inset. The filled contours represent surface elevation (m) at 10 km resolution. 



SOURCES OF SOIL DRYNESS MEASURES AND FORECASTS FOR FIRE DNAGER RATING 

 

 

11 
 

4.1 OzNet 

The two main campaigns whose observations are included in this dataset are the 

Goulburn River campaign (Rüdiger et al., 2007) and the Murrumbidgee Soil Moisture 

Monitoring Network (Fig. 3a; Smith et al., 2012). The Goulburn dataset span for a time 

period of 5 years (2002 – 2007) over a catchment area of 6540 km2 in the state of New 

South Wales. The region generally experiences a subhumid or temperate climate, with 

the catchment itself is subjected to high variability in rainfall and evaporation during the 

year. The Murrumbidgee dataset primarily constitutes soil moisture observations in 

vegetation root zone measured continuously at about 38 sites situated in a semi-arid to 

humid climate over an area of 82,000 km2. The data are available from both ISMN and 

OzNet websites for the past ten years and is an ongoing data set (although data after 

May 2011 is currently embargoed). 

4.2 CosmOz 

CosmOz is a network of cosmic ray soil moisture probes established at thirteen 

locations around Australia (Hawdon et al., 2014). A cosmic-ray probe measures the 

number of fast neutrons near the land surface. Fast neutrons are created by high-energy 

cosmic-ray particles interacting with atmospheric nuclei. (Desilets and Zreda, 2013). 

Fast neutrons are strongly moderated by the presence of hydrogen and soil moisture 

represents the largest and most variable source of hydrogen near the surface. Therefore, 

measured intensities reflect variations in the surface soil moisture. The effective depth 

of measurement depends strongly on soil moisture itself (Zreda et al., 2008). The 

measurement depth decreases non-linearly with increasing soil moisture and, 

theoretically, ranges from about 70 cm in very dry soils to about 10 cm in saturated 

soils. One major advantage of cosmic-ray probes over traditional point measurement 

sensors is that cosmic-ray probes have a much larger horizontal footprint of about 660 

m in diameter at sea level (Desilets and Zreda, 2013). The cosmic-ray probes can 

estimate surface soil moisture with an accuracy of about 0.02 m3/m3 (Franz et al., 2012). 

All the sensors in the CosmOz network are stationary and are installed above the land 

surface at a height of 1–2 m. CosmOz observations are obtained from the online portal 

http://cosmoz.csiro.au/ managed by Commonwealth Scientific and Industrial Research 

Organization (CSIRO) of Australia. The data processing and calibration methods used 

by the CosmOz network are described by Hawdon et al. (2014). The locations of the 

CosmOz probes, used in this study, are shown in Fig. 3b. 
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5. REMOTE SENSING OF SOIL MOISTURE 

In situ soil moisture measurements, though highly reliable, could be cost-prohibitive for 

extended spatial mapping. Since soil moisture exhibits spatial variability depending on 

the topography of an area and the soil characteristics, methods to characterize it on a 

regional scale without the necessity for exhaustive manual measurements would be 

beneficial for applications like fire and flood forecasting. Remote sensing using aircrafts 

or satellites offers the potential for large spatial coverage (even global in case of 

satellites) of high-resolution, aggregated soil moisture mapping (Lakshmi, 2013). 

Advances has been made in active and passive satellite remote sensing techniques to 

provide unique capability of measuring soil moisture at regional and global scale which 

satisfy the science and application needs of hydrology. The theory of soil moisture 

remote sensing stems from the fact that the electromagnetic response of land surface is 

modified by its soil moisture content (refer Appendix A for basic theory). Various 

regions of the electromagnetic spectrum have been used to estimate soil moisture, 

including gamma radiation (Carroll, 1981), thermal infrared (Price, 1982), and passive 

and active microwave (Jackson et al., 1996). There are many factors that modulate the 

radiation reaching the sensor; for example surface temperature, surface roughness, 

vegetation, atmospheric effects etc. However, these effects are negligible at low 

frequencies of microwave spectrum (roughly 1 – 5 GHz), making them an appropriate 

spectral range for soil moisture measurements. Further, longer wavelengths have a 

higher capacity to measure deeper (2 – 5 cm) soil moisture layers, the penetration depth 

being of the order of one tenth of the wavelength (Lakshmi, 2013). These are significant 

advantages of microwave remote sensing and hence there has been considerable amount 

of research done to determine soil moisture in low-frequency microwave spectra 

(Jackson and Schmugge, 1995; Jackson et al., 1999).  

The earliest efforts to determine soil moisture from space-borne microwave sensors for 

large spatial scale hydrological studies started with the availability of Scanning Multi-

channel Microwave Radiometer (SMMR; Njoku et al., 1998) and Special Sensor 

Microwave Imager (SSM/I; Hollinger et al., 1990) data sets. Investigators used data 

from these two instruments for soil moisture retrievals, sensitivity and scaling studies at 

different spatial scales and also in conjugated studies with land surface models (Paloscia 

et al., 2001; Guha and Lakshmi, 2002; Wen et al., 2005; Lakshmi et al., 1998). Figure 4 

depicts a schematic overview of the past, present and future soil moisture remote 

sensing missions. The following sub-sections describe the available historical and 

current space-borne data sets. 
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5.1 SMMR 

The historic data set from SMMR spans from 1978 – 1987 and is based on C-band (6.63 

GHz) passive microwave measurements. The effective sensing depth of C-band data is 

roughly 1 cm. The SMMR data were found to be more relevant in regions of transition 

from wet to dry climate, because the data was affected by dense vegetation over wet 

regions and the high level of noise in the data masked the small variability in dry 

regions. Validations against ground based observations showed that the SMMR dataset 

exhibits a large bias of about 0.1 m3/m3 in volumetric soil moisture content (Reichle et 

al., 2004).  

5.2 SSM/I 

The SSM/I data set is available since 1987 and uses the 19.4 GHz Ku-band channel 

measurements to retrieve soil moisture information. A recent study by van der Velde et 

al. (2014) using a new retrieval algorithm achieved a root mean square error of 0.046 

m3/m3 over Tibetan Plateau, which is almost in agreement with the accuracy 

requirements of satellite missions specifically dedicated to soil moisture. However, 

different studies on SSM/I observations has concluded that even though soil moisture 

retrieval is possible using the SSM/I dataset, the accuracy is limited for dense 

vegetation and cloud conditions (Wen et al., 2005; Jackson et al., 2002). This is 

somewhat the characteristics of most frequencies in the higher end of the soil moisture 

sensitive spectra where  scattering by vegetation canopies competes with soil moisture 

in governing the spectral gradient.  
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Fig. 4 Overview of soil moisture remote sensing from space – missions and their timelines. Courtesy: 
European Space Agency and Technische Universität Wien. 

5.3 WindSat 

WindSat passive microwave data at 10, 18.7, and 37 GHz were used to produce global 

retrievals of soil moisture and were then validated against climatologies and in situ 

network data (Li et al., 2007). The authors found that the retrieved volumetric soil 

moisture values were in good agreement with the truth and the mean bias observed was 

about 0.004 m3/m3, which was within the requirements for most science and operational 

applications. The retrieved SM distributions are also found to be very consistent with 

global climatology and mesoscale precipitation patterns.  

5.4 TRMM 

Successful soil moisture retrievals were also carried out from Tropical Rainfall 

Measuring Mission (TRMM) Microwave Imager (TMI; Gao et al., 2006). The TRMM 

data set is available from 1997 and are based on X-band (10.65 GHz) passive 

microwave observations. Like C-band, the effective sensing depth of X-band is also 

restricted to first 1 cm of soil layer. Gao et al., 2006 compared the TMI soil moisture 

estimates against the Oklahoma Mesonet observations for a period of four years, and 



SOURCES OF SOIL DRYNESS MEASURES AND FORECASTS FOR FIRE DNAGER RATING 

 

 

15 
 

found that that the retrieved product is comparable to the in situ soil moisture values, 

with an average seasonal correlation of 0.59. Further, the TMI soil moisture product 

exhibited a consistency with the corresponding precipitation field. 

Table 2 Validation studies of sensors against the in situ observations.  

Instrument Resolution 
Study 
Area 

Literature 
Source 

Validation Metric 

Bias 

(m3/m3) 

RMSD 

(m3/m3) 
Correlation

SMMR ~25 km Global Reichle et al., 

2004

0.01 ―― 0.45 

SSM/I ~25 km Tibet 
van der Velde 

et al., 2014 
―― 0.046 ―― 

ERS 50 km Sahel 
Gruhier et al., 

2010 
0.042 0.054 0.52 

AMSR-E* 

60 km Australia 
Draper et al., 

2009 

―― 
0.013 to 

0.066 
0.54 to 

0.94 

AMSR-E# 
-0.01 

to 0.19 
0.05 to 

0.19 
0.45 to 

0.92 

ASCAT+ 35 km Australia 
Abergel et 
al., 2012 

–0.021 0.184 0.80 

SMOS+ 40 km Australia 
Abergel et 
al., 2012 

0.195 0.255 0.74 

AMSR2+ 60 km Australia 
Rudiger et 
al., 2013 

–0.01 
to 0.05 

0.04 to 
0.09 

―― 

Note that studies with only one value for each metrics implies the mean values and with 
a range implies that deduces from each sites over the catchment/basin. (*) validation 
against filtered and bias corrected AMSR-E dataset; (#) validation against the original 
AMSR-E dataset. (+) To enable a fair comparison, both in situ and remotely sensed soil 
moisture data sets are scaled between [0,1] using their own maximum and minimum 
values. 
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5.5 ERS 

ERS Scatterometer which is a vertically polarized radar operating at C-band (5.3 GHz) 

is another historical data set available for soil moisture studies. It has been flown on 

board of the European Remote Sensing Satellites (ERS) –1 (1991 – 1996) and –2 (1995 

– 2011). The instrument measures the backscattering coefficient from three different 

antennas with one looking normal to the satellite track, another one pointing 45° 

forward, the third one pointing 45° backward with respect to the satellite flight track. 

The spatial resolution is about 50 km with a swath width of 500 km. A soil moisture 

index, which is representative of surface (0 – 5 cm) soil moisture at watershed scale, can 

be derived from ERS-Synthetic Aperture Radar (ERS-SAR) data (Quesney et al., 2000). 

Wagner et al. (2007) through statistical analysis on ERS-SAR datasets found out that 

these retrieved soil moisture products contribute effectively to the monitoring of trends 

in surface soil-moisture conditions, but not to the estimation of absolute soil-moisture 

values. An independent validation study by Drusch et al. (2004) found that, when 

validated against the Southern Great Plains field experiment, the ERS scatterometer 

datasets (both ERS–1 & –2) show a reasonably good temporal evolution of soil 

moisture and the root mean square errors were at 0.057 m3/m3. The authors also 

compared the ERS derived surface soil moisture product against the ERA reanalysis and 

found a high correlation between them, indicating that the retrievals are as accurate as 

the reanalysis data set. The ERS soil moisture product has also been validated against in 

situ observations located at three representative sites along a North-South climatic 

gradient in the African Sahel region (Gruhier et al., 2010). The authors generally 

obtained good consistency between the ERS satellite soil moisture product derived 

using the TU Wien algorithm remapped at 12.5 km grid resolution and ground 

observations, with consistent spatial distribution compared to the other sensors assessed. 

The correlation, RMSE error and bias obtained over the Sahel region was 0.52, 0.054 

and 0.042 respectively. The ERS is succeeded by the MetOp mission which is described 

in a following paragraph.  

5.6 AMSR-E 

Another data available is from the Advanced Microwave Scanning Radiometer – Earth 

Observing System (AMSR-E; Njoku, 2006) on NASA’s Aqua satellite and which is 

developed by National Aeronautics and Space Administration (NASA) in collaboration 

with the Vrije Universiteit Amsterdam (Owe et al., 2008). Soil moisture retrievals are 

produced from the C-band (6.92 GHz) passive brightness temperature observations and 

a Land Parameter Retrieval Model (LPRM). Due to radio frequency interference (RFI) 
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in the C-band over north America, NASA also produced a soil moisture product from 

X-band (10.65 GHz) using a different algorithm (Draper et al., 2009). These products 

has been extensively validated against field observations over different regions (Wagner 

et al., 2007; Draper et al., 2009; Brocca et al., 2011) and are found to be of good 

agreement. For example Draper et al., 2009 validated the AMSR-E data, generated 

using the Vrije Universiteit Amsterdam – NASA algorithm and which contains soil 

moisture retrievals from both the C- and X-band, with the in situ observations from the 

Murrumbidgee and Goulburn field campaigns in south-eastern Australia and found that 

for a normalized and filtered data the correlations and root mean square errors were 0.8 

and 0.03 m3/m3 respectively. However, the validations with original data yielded a 

much higher errors (Table 1) which in some cases were three times that from the 

normalized and filtered one. They argued that filtering and normalization is essential for 

effective scaling and comparison with ground observations as the data is prone to high 

level of noise, bias and variability. However, it is worth noting that the filtered and 

normalized data tend to miss the sudden increase in soil moisture content due to large 

precipitation event, a feature aggravated by the filtering they did on AMSR-E data in 

the form of five day moving average. The AMSR-E data set spans from 2002 – 2013, 

and ceased operations in October 2013 due to a mechanical failure of the spinning 

mechanism. It is not clear at the moment whether the operations would be restarted for 

AMSR-E. 

5.7 SMOS & ASCAT 

There are currently two operational missions for soil moisture observations as part of 

European Space Agency's “Living Planet” programme; the Microwave Imaging 

Radiometer with Aperture Synthesis (MIRAS) on board Soil Moisture and Ocean 

Salinity (SMOS) satellite, and the Advanced Scatterometer (ASCAT) on board 

meteorological satellites MetOp-A/B. The ASCAT data from MetOp-A is operationally 

received in the Australian Bureau of Meteorology. Figure 5 shows a typical time 

averaged soil moisture products retrieved in early October from ASCAT and SMOS 

missions over Australia. The SMOS satellite was launched successfully in November 2, 

2009 with data available from November 20, 2009. MIRAS on board the SMOS 

mission operates at L-band (1.4 – 1.427 GHz) frequencies and provide global maps of 

soil moisture and vegetation water content with an accuracy of about 0.04 m3/m3 and 

0.5 kg/m2 respectively at a pixel resolution of 35 km at nadir to ∼90 km at the scan 

edges (Kerr et al., 2001). In order to achieve the higher spatial resolution required for 

soil moisture measurements in L-band without the need for a huge antenna, the aperture 
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synthesis technique was employed, where the large antenna size required has been 

simulated through 69 small antennas distributed over the three arms and central hub of 

the MIRAS instrument. An exhaustive validation study conducted by Albergel et al. 

(2012) on SMOS and ASCAT datasets using in situ observations located around the 

world found a satisfactory mean correlation of 0.54 and 0.53 respectively. On the 

disaggregation of analysis over different regions, they obtained a correlation of 0.74 for 

SMOS and 0.80 for ASCAT over Australia, which is one of the highest among all the 

regions. They attribute this higher correlations observed over Australia to two reasons; 

(i) Australia is minimally affected by the Radio Frequency Interference (RFI) effects 

which disturbs the natural microwave emissions and, (ii) OzNet sites are predominantly 

located over regions of significant bare soil fraction and/or dry vegetation caused by the 

crop rotation practice. Another study by Sánchez et al. (2012) during a period from 

January to December in 2010 using 20 in situ soil moisture stations from the 

REMEDHUS network in Spain found an acceptable level of agreement between the in 

situ and satellite data with a correlation of 0.73, root mean square error 0.069 m3/m3, 

bias of 0.053 m3/m3 and a centred (bias removed) root-mean-square difference of 0.044 

m3/m3. However, other validation studies done at locations in United States (Al Bitar et 

al., 2012) and Europe (Lacava et al., 2012; Dall’Amico et al., 2012) found a slight 

under-estimation in the SMOS soil moisture. On a positive note, it is worth noting that 

the results from all these studies concluded that the SMOS could successfully achieve 

the accuracy objective of 0.04 m3/m3 at most of the validation sites. 

 

	

Fig. 5 Three-day (4 – 6 October 2014) averaged maps of  retrieved (a) soil wetness index from ASCAT 
and (b) volumetric soil moisture content from SMOS satellite over Australia.	
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5.8 AMSR2 

The Global Change Observation Mission-Water (GCOM-W; Imaoka et al., 2010) 

launched by the Japanese Space Agency is another instrument which provides 

microwave observations of land surface. GCOM-W1 was launched successfully on May 

17, 2012 and began collecting data on July 4, 2012. The Advanced Microwave 

Scanning Radiometer–2 (AMSR2) is the sole instrument on board the GCOM-W1 

mission and is a successor of the AMSR-E instrument on board EOS-Aqua satellite 

with some improvements in the calibration system and an addition of 7.3 GHz channel 

to mitigate the radio-frequency interference issue seen in AMSR-E. An initial 

evaluation of the Level 3 soil moisture products from AMSR2 using in situ hydrological 

observation data from the OzNet monitoring network across south-eastern Australia 

showed that the root means square error is about 0.04 – 0.09 m3/m3 (Rüdiger et al., 

2013). An extensive monitoring and validation campaign of AMSR2 on board GCOM-

W1 is undertaken in the Australia Murray Darling basin (Walker et al., 2012) and are 

expected to see more outcomes from the project in the near future. 

5.9 Recent / future platforms  

The space-borne observational network of soil moisture is anticipated to grow further 

with several launches planned in near future. An example of a state-of-art platform 

which was launched recently (on 31st January 2015) is the Soil Moisture Active/Passive 

mission (SMAP) by NASA. SMAP is an advanced system which consists of both 

passive and active microwave sensors and is expected to provide soil moisture 

measurements at a much higher resolution than the current passive radiometers. SMAP 

is designed to provide for data disaggregation, where the high resolution (~1 km) radar 

data is used to disaggregate coarser resolution (~36 km at nadir) passive radiometer data 

(Lakshmi, 2013). MetOp–C which will carry another ASCAT instrument is expected to 

be launched in 2016 and will provide supplement the already existing MetOp-A/B 

ASCAT observations. The Argentine Space Agency is planning the launch of two 

Microwaves Observation Satellites SAOCOM–1A and SAOCOM–1B in 2014/15, both 

of which will be equipped with a L-band (1.275 GHz) full polarimetric Synthetic 

Aperture Radar. Thus the addition of all these planned satellites is expected to provide 

an uninterrupted stream of daily soil moisture observations well beyond 2020.  

Different studies of sensor and retrieving algorithm validation have used diverse 

methodologies and reference datasets (both in location and instrumentation) for their 

purpose, making it very difficult to assess the relative accuracy of these sensors and 
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their respective algorithms to retrieve soil moisture. This is even true for the same 

sensors studied and validates across different climate regimes and vegetation zones. 

Nevertheless, we try to summarize the results from the studies made on each sensor and 

mentioned in the above paragraphs as a table (Table 1) for the interest of readers.  

The results from the above mentioned validation studies show that soil moisture 

products from satellite sensors are of high quality and generally capture the temporal 

variability of soil moisture to a good extent. For sensors like AMSR-E, ASCAT and 

SMOS, which has been validated in contrasting biome and climatic conditions, the 

temporal correlations with in situ data look rather satisfactory. A lot of research is 

undertaken to improve the retrieval algorithms used to derive the soil moisture products 

from existing platforms (Nichols et al, 2001). Such improved products have shown 

higher accuracy (Velde et al., 2014; Draper et al., 2009) compared to the older ones. 

With the sensors and their retrieval algorithms continue to improve, the confidence in 

soil moisture products from remote sensing is expected to only increase. 

6. LANDSCAPE WATER BALANCE MODELS 

Landscape water balance models allow to assess water resources and their availability 

for use at a regional and continental scale. They provide information on water 

distribution, storage, availability, and use by taking into account the local climatic and 

hydrological conditions. Two prominent landscape water balances model used in 

Australia are the Australian Water Resources Assessment (AWRA; van Dijk, 2010) 

system and the WaterDyn (Raupach et al., 2009). These two models are run at daily 

time steps with a spatial resolution of 5 km. 

The AWRA system is operational in Bureau of Meteorology and provides daily updates 

of catchment water balance. It constitutes of three components, (i) a landscape 

component which accounts for the vegetation water use and soil water dynamics (ii) a 

river component which describes the surface water body dynamics, open water 

evaporation and catchment water yield, and (iii) a groundwater component which 

calculate the groundwater flow estimates. AWRA system is calibrated against a range 

of observations including ground measurements such as river gauges, irrigation 

diversion metering, soil moisture sensors and satellite observations of vegetation cover, 

flooding, soil moisture, precipitation, evaporation and groundwater dynamics. 

WaterDyn considers terrestrial water balance in the unsaturated soil column, spatially 

resolved across the whole Australian continent. It thus accounts for transpiration, soil 
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evaporation, leaching and deep drainage. The model is defined on two soil layers of 

depth 0.2 (surface to 0.2m deep) and 1.3 m (0.2 to 1.5 m). It has an option to include a 

sub-model to calculate dynamic vegetation cover fraction and leaf carbon. This model is 

run operationally as part of the AWAP project to monitor the state and trend of the 

terrestrial water balance of the Australian continent. 

Evaluation of AWRA and WaterDyn against catchment observations show that AWRA 

performs better than WaterDyn (Frost, 2014). However, this is not surprising as AWRA 

is calibrated against a wide range of observations, whereas WaterDyn is not. Frost 

(2014) also benchmarked these two models against an uncalibrated Community 

Atmosphere Biosphere Land Exchange (CABLE; Kowalczyk et al.,2013) land surface 

model. The results show that, although AWRA and WaterDyn skills in simulating 

evapotranspiration and root zone soil moisture are lower than that of CABLE, they 

perform reasonably well. Currently, these landscape water balance models are driven by 

observation based analyses at a daily time step. At present, these models are only used 

operationally for water resource assessment and doesn’t provide any forecasting 

capability. This may limit their applicability for fire danger ratings. Further, the 

operational version of these models are run at a coarse temporal resolution (daily). 

There is a lack of literature in the suitability of AWRA and WaterDyn models at sub-

daily scales and their accuracy in simulating diurnal variation of soil energy and water 

states. Further, the operational version of these models are yet to be incorporated with 

advanced data assimilation techniques to constraint the soil hydrology. It should be 

therefore assumed that, though there is potential, these models are rather not useful in 

their current form for fire prediction applications. 

7. LAND SURFACE MODELS 

Land surface models (LSMs) are another source which could provide good estimates of 

soil moisture. They represent processes which regulate the exchanges of water and 

energy through the soil–plant–atmosphere continuum. This is achieved through the 

detailed representation of the transport of momentum, heat and water in the continuum; 

and depiction of thermal and hydrological processes in the soil and snow (Best et al., 

2011). Land surface models have evolved a lot in recent years and can now account for 

plant physiology, vegetation dynamics, carbon assimilation and groundwater dynamics 

(Niu et al., 2011). Most of the LSMs represents the soil moisture as a prognostic 

variable. The simulated soil moisture is rather a model specific quantity and may vary 

from model to model. Some of the prominent LSMs are Joint UK Land Environment 

Simulator (JULES; Best et al., 2011; Fig. 6) developed in the United Kingdom, NOAH 
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LSM whose development is spearheaded by the National Centre for Environmental 

Prediction in the United States (Chen and Dudhia, 1996; Koren et al., 1999) and the 

CABLE model (Kowalczyk et al.,2013) developed in Australia. 

The land surface models form an integrated part of NWP and climate models and 

provide lower boundary conditions to them. In Australia, for example, the operational 

global NWP system called Australian community Climate and Earth Simulator 

(ACCESS) employed by the Bureau of Meteorology incorporates the Met Office 

Surface Exchange Scheme version 2 (MOSES2, Essery et al., 2001) LSM, which is a 

predecessor to JULES. The next updated version of ACCESS will use JULES, with 

operational testing currently under way. In MOSES2 (and generally in all LSMs), the 

prognostic equation for soil moisture is given by Richard’s equation which is derived 

from Darcy’s law under the assumption of a rigid, isotropic, homogeneous, and one-

dimensional vertical flow domain. The MOSES2 soil is 3 m thick and is discretised into four 

layers of 0.1, 0.25, 0.65 and 2 m thickness from top to bottom. The simulated soil moisture 

from MOSES2 are given in the units of mass per unit area (kg/m2). The climate mode of 

ACCESS uses the CABLE LSM, developed locally in Australia. CABLE also uses the 

Richards’ equation for soil water estimation and has six discrete soil layers. Work is 

now undertaken to incorporate CABLE into the NWP system. 
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Fig. 6 Volumetric soil moisture content at layers (a) 0.0 – 0.1 m, (b) 0.1 – 0.35 m, (c) 0.35 – 1.0 m, and 
(d) 1.0 – 3.0 m from the JULES LSM which is coupled to the regional ACCESS numerical weather 
prediction model. The model resolution is 12 km x 12 km.		

7.1 LSM inputs 

LSMs can be run either in a coupled mode, where it is integrated with an atmospheric 

model, or as stand alone which can be run by offline input parameters and forcing data. 

In the first case the forcing data used to drive the LSM are outputs from the atmospheric 

model which it is coupled to. The offline version can have all forcing fields and 

parameters obtained from a single source or from multiple sources. The common 

forcing fields to drive an LSM and their SI units are given in Table 2. For offline 

simulations in a regional scale, gridded observational analyses are generally used to 

drive the LSMs. The temporal resolution of these forcing data are crucial depending 

upon the LSM application and is found to have an impact on model water balance 
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(Compton and Best, 2011). It was found that the evaporation tend to decrease with a 

decrease in the resolution of forcing data because of the fact that the peak in shortwave 

radiation are not captured well enough by the coarser dataset. This inturn produced a 

higher run-off, since LSMs close the water budget by construct. Compton and Best 

(2011) also studied the effect of forcing fields with different spatial resolution and 

found that due to larger peak precipitation rates in high resolution datasets, vegetation 

canopy interception decreases resulting in less canopy evaporation, but compensated by 

a larger evaporation from the soil. 

High temporal resolution data for global LSM research simulations are generally 

achieved through the use of atmospheric reanalysis products like National Centre for 

Environmental Prediction–National Centre for Atmospheric Research (NCEP–NCAR; 

Kalnay et al., 1996) reanalysis or the European Centre for Medium Range Weather 

Forecasts (ECMWF) Reanalyses (ERA) –40 (Uppala et al., 2005) and –15 (Gibson et 

al., 1997). A reanalysis is produced using unchanged (frozen) versions of numerical 

weather prediction and assimilation systems that blends in a variety of atmospheric and 

sea surface observations to provide optimal grids of long-term, continuous atmospheric 

and land surface fields in time and space. Although the reanalysis contains biases, they 

have the advantage of consistency needed to force LSMs for a longer period.  However, 

these reanalyses usually have a temporal resolution of 6 hours which could be 

problematic for specific applications. National NWP centres also perform analyses as 

part of their routine operational NWP runs, where advanced data assimilation 

techniques are used to produce an optimal atmospheric state from observations and 

model forecast valid at that time. This analyses serves as the initial condition for the 

next set of NWP forecasts. With an increasing computational resources, these analyses 

could be made at a much shorter time steps (3 hours or even less) in future which could 

be useful in an LSM perspective. However, unlike reanalyses this NWP analyses could 

undergo rapid changes as the centres always explore the possibility of improvements in 

model resolution and physics, usage of more number and types of observations etc. 

Another important issue with NWP is the errors in their precipitation fields, which 

could adversely affect the LSMs capability to estimate the root-zone hydrologic 

conditions. Mitchell et al. (2004) demonstrated that the first-order errors in the LSM 

simulations were due to inaccurate specification of the forcing fields, especially the 

precipitation. The advantage of operational NWP analyses and forecasts however is that 

it presents and opportunity to run the LSMs almost real-time. 
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Table 3 Generic meteorological forcing variables required to drive an LSM. 

No Forcing Variable Units 

1 Downward component of shortwave radiation at the surface W m−2 

2 Downward component of longwave radiation at the surface W m−2 

3 Rainfall kg m−2 s−1

4 Snowfall kg m−2 s−1

5 Wind speed m s−1 

6 Atmospheric temperature K 

7 Atmospheric specific humidity kg kg−1 

8 Surface Pressure Pa 

A few observation based analyses are also available which could be useful for driving a 

LSM for applications such as fire prediction. For example, in Australia there are mainly 

two observations based analyses available, the Mesoscale Surface Analysis System 

(MSAS; Glowacki et al., 2012) and the Australian Water Availability Project (AWAP; 

Jones et al., 2009) analysis. MSAS is developed at the Australian Bureau of 

Meteorology and aims to create an operational gridded surface analysis which mitigate 

problems arising due to inhomogeneous observation distribution in space and time. 

MSAS gives hourly analyses of atmospheric pressure at mean sea level, potential 

temperature, 2-m dewpoint temperature, and 10-m wind components that are generated 

on a 4-km grid. The MSAS fields are found to be significantly more accurate than the 

current operational NWP model fields and are on par with similar analysis systems 

employed in different parts of the world. The AWAP dataset includes a range of 

improved meteorological analyses and remotely sensed datasets for Australia which 

include analyses of rainfall, temperature, vapour pressure and wind at daily and monthly 

timescales on 0.05o x 0.05o spatial grid. The dataset is created by applying topography-

resolving analysis methods to in situ observations of rainfall, temperature and vapour 

pressure to produce analyses for a period from 1900 to the present. The resulting 

analyses proved to be a substantial improvement on the preceding operational analyses 

produced by the Bureau of Meteorology and are widely used in Australia for climate 

studies (King et al., 2012). However, it is worth noting that both MSAS and AWAP 

doesn’t produce all the variables required (Table 2) to drive an LSM. Further, the 
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AWAP data are available only on a daily basis which limits its use for sub-daily land 

surface calculations. However, data disaggregation methods can be employed to create 

sub-daily fields out of the daily ones (Williams and Clark, 2014). 

Inherently, due to the inadequacies of model physics, errors in representativity, 

parsimonious numerical representation of highly nonlinear physical processes, and 

limited accuracy of the input static parameters, meteorological forcing and initial 

conditions, the soil moisture hydrology simulations by LSMs often exhibit large 

uncertainties (Henderson-Sellers et al., 1995; Godfrey and Stensurd, 2008). Data 

assimilation systems allow us to offset such uncertainties to some extent by routinely 

updating the hydrological conditions using information provided by observations on 

state variables used by LSMs (Dharssi et al., 2011; Draper et al., 2009). The following 

section gives a brief overview on the background and advances made in the field of land 

surface data assimilation. 

Table 4 Generic ancillary data required by an LSM 

Parameters Units 

Land cover  

Green vegetation fraction  

Topographical elevation m 

Soil type  

Land-sea mask  

Volumetric wilting point for soil m3 m−3 

Dry soil thermal capacity J K−1 m−3 

Dry soil thermal conductivity W m−1 K−1 

Volumetric saturation point for soil m3 m−3 

Critical volumetric soil moisture content of soil m3 m−3 

Soil Saturated hydraulic conductivity of soil kg m−2  s−1 

Bare soil albedo  
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7.2 Land surface data assimilation 

Data assimilation is the process through which real world observations enter the model's 

forecast cycles, provide a safeguard against model error growth and contribute to the 

initial conditions for the next cycle. Large differences between model and observations 

may exist and hence observations are assimilated to correct each short-range forecast 

that serves as the basis for the next analysis, resulting in a series of small corrections to 

the model forecast. Ideally, the model forecast would be corrected to the "true" state of 

the atmosphere within the limits of what the model is able to predict based on its 

resolution and physics. Data assimilation involves a number of distinct steps like (i) 

ingesting the data, (ii) decoding coded observations (iii) weeding out bad data, (iv) 

comparing the data to the model's short-range "first-guess" fields, and (v) adjusting the 

data (in the form of model corrections) onto the model grid for making the forecast. 

This process thus blends information from the short-range forecast with information 

from the new observations. 

One of the approach in land surface assimilation is to use an indirect method, where the 

evolving screen-level temperature and humidity ― through their assimilation ― are 

used to estimate soil temperature and moisture (Vinodkumar et al., 2009). This method 

makes use of the denser screen level observations available, and surrogates the 

sparseness of hydrological observations to some extent. ACCESS NWP system 

employs a similar physically based soil moisture nudging technique (Best et al., 2007). 

The nudging scheme in ACCESS is physically based as it uses the model equations and 

the model soil and vegetation parameters (e.g. wilting point, field capacity, fraction of 

bare soil, vegetation root depth). The model wilting point and field capacity parameters 

have a significant impact on the magnitude of the analysed soil moisture. While the 

fraction of bare soil and vegetation root depth parameters significantly modulate the 

vertical variation of the soil moisture nudges. Since errors in forecasts of screen 

temperature and humidity are due to many factors, the ACCESS soil moisture nudging 

scheme seeks to identify and correct for those errors in forecasts that are due to the 

model soil moisture. The ACCESS NWP soil moisture nudging scheme is only active in 

unstable conditions (negative Richardson number), where the errors in screen 

temperature and humidity are of opposite sign (i.e. model boundary layer too warm and 

dry or model boundary layer too cold and moist), where there is evaporation, and where 

there is no snow cover. The soil moisture nudging is performed four times a day and 

only adjusts model soil moisture for the portion of the globe in daylight. The soil 

moisture nudging scheme can correct the model soil moisture not only for random 

errors but also for persistent systematic errors in the model such as biases in the model 
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precipitation. A significant disadvantage of the soil moisture nudging scheme is that the 

model soil moisture can become updated for model errors that are unrelated to soil 

moisture. The soil moisture nudging scheme only uses observations of screen level 

temperature and humidity and doesn’t use any remotely sensed observations or any 

observations of precipitation. 

However, with the advances made in microwave remote sensing of soil state through 

dedicated satellites launched for hydrologic monitoring, spatially comprehensive 

observations can now be available at larger scales. Numerous studies have been 

conducted on the use of such datasets in conjugation with land data assimilation 

systems (e.g., Dharssi et al., 2011). The availability of more and more observations, 

especially satellite ones, spurred significant advances to be made in land surface data 

assimilation in a short period of time. This was also helped by the knowledge gained 

from the experience of data assimilation in the field of meteorology and oceanography. 

Today, advanced approaches in data assimilation like the Extended Kalman Filter 

(Dharssi et al., 2012) are widely used by land surface modelling community to get the 

best estimate on fields of primary interest, like the soil moisture content. The advantage 

of Kalman filter based data assimilation techniques is that it allows flexibility in 

handling all sources of uncertainties along with the possibility of ingesting the data 

sequentially as it becomes available. These algorithms can also make use of both screen 

level and remote sensing observations and are found to be superior to the earlier used 

techniques like optimal interpolation (de Rosnay et al., 2012). 

The idea that remote sensing and land surface models are somewhat complementary, as 

the former could give discontinuous but spatially comprehensive and relatively accurate 

measurements of the hydrologic system, and the later give the temporal and spatial state 

of the entire system variations albeit with larger errors, gives an opportunity to 

optimally merge these two data types to derive a best possible hydrologic system state 

estimation. The general outcome of the studies which ingested surface soil moisture 

products from various satellites is that the assimilation of this products yield a better 

estimate of the soil moisture. 

Walker and Houser (2004)  demonstrated that in order to see an improvement in the 

analysis of soil moisture due to assimilation of remote observations, the observation 

errors should be less than the model forecast errors. However, Draper et al. (2012) 

found that, even though correlation between in situ measurements and an open-loop (no 

assimilation) LSM run (Rim) was better than that between the in situ and satellite data 

(Rir), assimilation of this satellite data still yielded positive impact on the analysed soil 
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moisture. Their analysis showed that assimilation of satellite observation with Rir no 

more than 0.2 below Rim, generally increased the soil moisture skill up to 40 per cent as 

Rir increased relative to Rim (Fig. 7). In this context, it is also important to understand 

that the remotely sensed observations itself could have biases associated with it mainly 

due to instrument calibrations, drift due to ageing, spatial representativeness and 

limitations in retrieval algorithms or forward models calculations. Hence it is essential 

to quality control and bias correct the satellite data using different methods like 

cumulative distribution function (CDF) matching (Reichle and Koster, 2004; Drusch et 

al., 2005). 

 

Fig. 7 Skill improvement from assimilating either ASCAT or AMSR-E for (a) surface and (b) root-zone 
soil moisture, as a function of the open-loop and observation skill. The results show that 
assimilation can improve skill, provided the observation skill minus open-loop skill > -0.2. Skill is 
defined as the temporal correlation against ground based observations. Courtesy: Draper et al. 
(2012). 

8. CONCLUSIONS 

Knowledge of soil dryness is critical for the management of bushfires and contribute 

significantly to the release of early fire warnings. The McArthur’s Forest Fire Danger 

Rating System currently employed in Australia uses very simple empirical based sub-

models called KBDI or SDI to calculate the moisture depletion in the upper soil layers. 

This methods were developed in 1960’s and are found to have serious limitations. 

Emerging new approaches to evaluate landscape dryness through the use of satellite 

remote sensing data, land surface modelling and data assimilation techniques are 

available; measuring dryness more systematically than the empirical methods. This 
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report try to list and describe these modern methods and datasets in order to give a 

clearer understanding of their of characteristics and usage.  

In an operational fire warning context, a temporally and spatially comprehensive dataset 

of soil moisture deficit at a higher resolution is required in a national scale. The very 

sparse ground-based soil moisture observations doesn’t provide the opportunity to 

monitor the soil dryness at such larger scales. However, with the advances made in 

remote sensing of soil moisture from space, especially in the microwave spectra which 

has shown to be correlated to soil moisture, a detailed description of its current state is 

available. The remote sensing data provides the advantages of global coverage and 

logistics over the in situ observations. But these observations are only limited to the 

topmost soil layers (usually less than 5 cm) and doesn’t give a full account of the root 

zone soil moisture fields. Almost complementary to the remote sensing capabilities, the 

land surface models gives a more detail description of the hydrological system with a 

sound physical basis. The land surface model are proven to be capable of producing 

meaningful estimates of land surface hydrologic conditions over large areas. 

Nevertheless, due to errors stemming from model initialisation, input parameter and 

meteorological forcing specifications, inadequate model physics and representativity 

errors from improper model resolution, the accuracy of LSMs could falter which could 

be proven critical for fire warnings that require higher confidence in the input soil 

moisture data. In order to overcome the deficiencies in LSM to some extent, remote 

sensing data could be ingested through advance data assimilation techniques to produce 

an optimal analysis of soil moisture that account for the errors in observations and 

model. The land surface data assimilation has shown to produce much better estimates 

of soil moisture states and are deemed to be an improvement over the current empirical 

methods employed in fire danger rating. 
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APPENDIX A: THEORETICAL BACKGROUND ON MICROWAVE 
REMOTE SENSING 

Microwave radiance measured by a satellite sensor is a sum of the land surface emission 

and cumulative contribution from the atmospheric layers. This can be written in the 

form of a rather simplified equation as: 

ܮ ൌ Ԫ௦ܤఒሺ ௦ܶሻ߬௦  ∑Ԫܤఒሺ ܶሻ߬    (10) 

where ԪP is the emissivity of the medium (surface/atmospheric layer), Bλ (T) is the 

Planck function, λ is  the wavelength sensed by the instrument, and τ is the atmospheric 

transmittance. The subscripts s and a denotes the surface and atmospheric contributions 

and the superscript P denotes the polarization of the microwave radiation (i.e., either 

horizontal (H) or vertical (V) polarized). The summation in the second term on right 

hand side indicates the sum of radiance emitted by each layer of the atmosphere with a 

physical temperature Ta. 

For land surface, the brightness temperature is related to the physical temperature as: 

ܶ
 ≅ Ԫ௦ ௦ܶ       (11) 

The surface emissivity is given by: 

Ԫ௦ ൌ 1 െ  ௦       (12)ߩ

where ߩ௦ is the surface reflectivity. For a smooth surface and a medium of uniform 

dielectric constant, the expressions for reflectivity at horizontal and vertical 

polarizations are given by Fresnel’s expressions: 

௦ߩ ൌ ฬ
∈ೝ௦ఏିඥ∈ೝି௦మఏ

∈ೝ௦ఏାඥ∈ೝି௦మఏ
ฬ
ଶ

     (13) 

௦ுߩ ൌ ฬ
௦ఏିඥ∈ೝି௦మఏ

௦ఏାඥ∈ೝି௦మఏ
ฬ
ଶ

     (14) 

where θ  is the incidence angle and ϵr is the complex dielectric constant of the medium.  

Since water has a higher ϵr compared to soil, an increase in soil moisture content of the 
soil increases the ϵr of soil layer. This lowers the surface emissivity and which inturn 
results in a corresponding decrease of observed brightness temperature. The absolute 
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magnitude of the soil emissivity is lower at H polarization than at V polarization, 
though the sensitivity to changes in soil moisture is considerably greater at H 
polarization than at V polarization (Owe et al., 2008) 



 

 
 

 
 


